Vol. 111
Latest Volume
All Volumes
PIER 180 [2024] PIER 179 [2024] PIER 178 [2023] PIER 177 [2023] PIER 176 [2023] PIER 175 [2022] PIER 174 [2022] PIER 173 [2022] PIER 172 [2021] PIER 171 [2021] PIER 170 [2021] PIER 169 [2020] PIER 168 [2020] PIER 167 [2020] PIER 166 [2019] PIER 165 [2019] PIER 164 [2019] PIER 163 [2018] PIER 162 [2018] PIER 161 [2018] PIER 160 [2017] PIER 159 [2017] PIER 158 [2017] PIER 157 [2016] PIER 156 [2016] PIER 155 [2016] PIER 154 [2015] PIER 153 [2015] PIER 152 [2015] PIER 151 [2015] PIER 150 [2015] PIER 149 [2014] PIER 148 [2014] PIER 147 [2014] PIER 146 [2014] PIER 145 [2014] PIER 144 [2014] PIER 143 [2013] PIER 142 [2013] PIER 141 [2013] PIER 140 [2013] PIER 139 [2013] PIER 138 [2013] PIER 137 [2013] PIER 136 [2013] PIER 135 [2013] PIER 134 [2013] PIER 133 [2013] PIER 132 [2012] PIER 131 [2012] PIER 130 [2012] PIER 129 [2012] PIER 128 [2012] PIER 127 [2012] PIER 126 [2012] PIER 125 [2012] PIER 124 [2012] PIER 123 [2012] PIER 122 [2012] PIER 121 [2011] PIER 120 [2011] PIER 119 [2011] PIER 118 [2011] PIER 117 [2011] PIER 116 [2011] PIER 115 [2011] PIER 114 [2011] PIER 113 [2011] PIER 112 [2011] PIER 111 [2011] PIER 110 [2010] PIER 109 [2010] PIER 108 [2010] PIER 107 [2010] PIER 106 [2010] PIER 105 [2010] PIER 104 [2010] PIER 103 [2010] PIER 102 [2010] PIER 101 [2010] PIER 100 [2010] PIER 99 [2009] PIER 98 [2009] PIER 97 [2009] PIER 96 [2009] PIER 95 [2009] PIER 94 [2009] PIER 93 [2009] PIER 92 [2009] PIER 91 [2009] PIER 90 [2009] PIER 89 [2009] PIER 88 [2008] PIER 87 [2008] PIER 86 [2008] PIER 85 [2008] PIER 84 [2008] PIER 83 [2008] PIER 82 [2008] PIER 81 [2008] PIER 80 [2008] PIER 79 [2008] PIER 78 [2008] PIER 77 [2007] PIER 76 [2007] PIER 75 [2007] PIER 74 [2007] PIER 73 [2007] PIER 72 [2007] PIER 71 [2007] PIER 70 [2007] PIER 69 [2007] PIER 68 [2007] PIER 67 [2007] PIER 66 [2006] PIER 65 [2006] PIER 64 [2006] PIER 63 [2006] PIER 62 [2006] PIER 61 [2006] PIER 60 [2006] PIER 59 [2006] PIER 58 [2006] PIER 57 [2006] PIER 56 [2006] PIER 55 [2005] PIER 54 [2005] PIER 53 [2005] PIER 52 [2005] PIER 51 [2005] PIER 50 [2005] PIER 49 [2004] PIER 48 [2004] PIER 47 [2004] PIER 46 [2004] PIER 45 [2004] PIER 44 [2004] PIER 43 [2003] PIER 42 [2003] PIER 41 [2003] PIER 40 [2003] PIER 39 [2003] PIER 38 [2002] PIER 37 [2002] PIER 36 [2002] PIER 35 [2002] PIER 34 [2001] PIER 33 [2001] PIER 32 [2001] PIER 31 [2001] PIER 30 [2001] PIER 29 [2000] PIER 28 [2000] PIER 27 [2000] PIER 26 [2000] PIER 25 [2000] PIER 24 [1999] PIER 23 [1999] PIER 22 [1999] PIER 21 [1999] PIER 20 [1998] PIER 19 [1998] PIER 18 [1998] PIER 17 [1997] PIER 16 [1997] PIER 15 [1997] PIER 14 [1996] PIER 13 [1996] PIER 12 [1996] PIER 11 [1995] PIER 10 [1995] PIER 09 [1994] PIER 08 [1994] PIER 07 [1993] PIER 06 [1992] PIER 05 [1991] PIER 04 [1991] PIER 03 [1990] PIER 02 [1990] PIER 01 [1989]
2010-11-30
Experimental Investigation and Optimization of Permanent Magnet Motor Based on Coupling Boundary Element Method with Permeances Network
By
Progress In Electromagnetics Research, Vol. 111, 71-90, 2011
Abstract
In the first part of this work, we develop a model to compute linkage fields in Outer Rotor Permanents Magnets synchronous machines (OR-PMSM), a structure which is often used in the automotive traction motors. To carry out such a design, we usually employ Finite Element analysis (FEA) software even if it is time consuming. Other designers prefer the Permeances Network Method (PNM) which is less accurate and needs offline FEM results to evaluate the unknown air-gap permeances. Comparatively, between FEM and BEM, the first method is more precise whereas the second is faster in computing times. We propose here a new technique using the hybridization of both the methods in order to gain the advantages of the two techniques, i.e., a relatively accurate and fast methods, so the high ratio fast of running/computing errors has been checked out. The second part deals with the multi-objective design optimization of the studied motor. To do this, we choose the decrease of cogging torque and the increase of torque as objectives applied to multi-objective optimization (MO) process.
Citation
Said Touati, Rachid Ibtiouen, Omar Touhami, and Abdesselem Djerdir, "Experimental Investigation and Optimization of Permanent Magnet Motor Based on Coupling Boundary Element Method with Permeances Network," Progress In Electromagnetics Research, Vol. 111, 71-90, 2011.
doi:10.2528/PIER10092303
References

1. Fredkin, R. and T. R. Koehler, "Hybrid method for computing demagnetizing fields," IEEE Transactions on Magnetics, Vol. 34, No. 10, 1064-1076, 1986.

2. Bettini, P., E. Brusa, M. Munteanu, R. Specogna, and F. Trevisan, "Static behavior prediction of microelectrostatic actuators by discrete geometric approaches," IEEE Transactions on Magnetics, Vol. 44, No. 6, 1606-1609, 2008.
doi:10.1109/TMAG.2007.916393

8. Farooq, J., S. Srairi, A. Djerdir, and A. Miraoui, "Use of permeance network method in the demagnetization phenomenon modeling in a permanent magnet motor," IEEE Transactions on Magnetics, Vol. 42, No. 4, 2006.
doi:10.1109/TMAG.2006.870936

4. Aiello, G., S. Alfonzetti, E. Dilettoso, and N. Salerno, "An iterative solution to FEM-BEM algebraic systems for open-boundary electrostatic problems," IEEE Transactions on Magnetics, Vol. 43, No. 4, 1249-1252, 2007.
doi:10.1109/TMAG.2007.892313

5. Roisse, H., "Contribution la modlisation des systmes lectrotechniques par la mthode des rseaux de permance couples,", Ph.D. Dissertation, Univ. Lille, France, 1998.

6. Perho, J., "Reluctance network for analysing induction machines,", Ph.D. Dissertation, Helsinki Univ. Technology, Helsinki, Finland, 2002.

7. Vaseghi, B., N. Takorabet, and F. Meibody-Tabar, "Transient finite element analysis of induction machines with stator winding turn fault," Progress In Electromagnetics Research, Vol. 95, 1-18, 2009.
doi:10.2528/PIER09052004

8. Petrichenko, D., M. Hecquet, P. Brochet, V. Kuznetsov, and D. Laloy, "Design and simulation of turbo-alternators using a coupled permeance network model," IEEE Transactions on Magnetics, Vol. 42, No. 4, 1259-1262, 2006.
doi:10.1109/TMAG.2006.871995

9. Jian, L. and K.-T. Chau, "Analytical calculation of magnetic field distribution in coaxial magnetic gears," Progress In Electromagnetics Research, Vol. 92, 1-16, 2009.
doi:10.2528/PIER09032301

10. Priede, J. and G. Gerbeth, "Boundary-integral method for calculating poloidal axisymmetric AC magnetic fields," IEEE Transactions on Magnetics, Vol. 42, No. 211, February 2006.

11. Faiz, J. and B. M. Ebrahimir, "Mixed fault diagnosis in three-phase squirrel-cage induction motor using analysis of air-gap magnetic field," Progress In Electromagnetics Research, Vol. 64, 239-255, 2006.
doi:10.2528/PIER06080201

12. Wu, K. L., G. Y. Delisle, D. G. Fang, and M. Lecours, "Coupled finite element and boundary element methods in electromagnetic scattering," Progress In Electromagnetics Research, Vol. 2, 113-132, 1990.

13. Botha, M. M. and J.-M. Jin, "On the variational formulation of hybrid finite element-boundary integral techniques for electromagnetic analysis," IEEE Transactions on Antennas Propag., Vol. 52, No. 11, 3037-3047, November 2003.
doi:10.1109/TAP.2004.835140

14. Trlep, M., L. Skerget, B. Kreca, and B. Hribernjk, "Hybrid finite element --- Boundary element method for nonlinear electromagnetic problems," IEEE Transactions on Magnetics, Vol. 31, No. 3, 1380-1385, 1995.
doi:10.1109/20.376284

15. Fetzer, J., S. Kurz, G. Lehner, and W. M. Rucker, "Application of BEM-FEM coupling and the vector preisach model for the calculation of 3D magnetic fields in media with hysteresis," IEEE Transactions on Magnetics, Vol. 36, No. 4, 1258-1262, July 2000.
doi:10.1109/20.877669

16. Hua, Y., Q. Z. Liu, Y. L. Zou, and L. Sun, "A haybrid FEBI method for electromagnetic scattering from dielectric bodies partially covered by conductors," Journal of Electromagnetic Waves and Applications, Vol. 22, No. 2-3, 423-430, 2008.
doi:10.1163/156939308784160802

17. Chen, J. and Q. H. Liu, "A non-spurious vector spectral element method for Maxwell's equations," Progress In Electromagnetics Research, Vol. 96, 205-215, 2009.
doi:10.2528/PIER09082705

18. Ravaud, R. and G. Lemarquand, "Comparison of the coulombian and amperian current models for calculating the magnetic field produced by radially magnetized Arc-shaped permanent magnets," Progress In Electromagnetics Research, Vol. 95, 309-327, 2009.
doi:10.2528/PIER09042105

19. Tsai, M.-C., C.-C. Huang, and S.-Y. Shen, "Analysis method for motor characteristics with three-dimensional flux distribution," IEEE Transactions on Magnetics, Vol. 40, No. 2, 443-450, March 2004.
doi:10.1109/TMAG.2004.824115