Vol. 18
Latest Volume
All Volumes
PIERL 119 [2024] PIERL 118 [2024] PIERL 117 [2024] PIERL 116 [2024] PIERL 115 [2024] PIERL 114 [2023] PIERL 113 [2023] PIERL 112 [2023] PIERL 111 [2023] PIERL 110 [2023] PIERL 109 [2023] PIERL 108 [2023] PIERL 107 [2022] PIERL 106 [2022] PIERL 105 [2022] PIERL 104 [2022] PIERL 103 [2022] PIERL 102 [2022] PIERL 101 [2021] PIERL 100 [2021] PIERL 99 [2021] PIERL 98 [2021] PIERL 97 [2021] PIERL 96 [2021] PIERL 95 [2021] PIERL 94 [2020] PIERL 93 [2020] PIERL 92 [2020] PIERL 91 [2020] PIERL 90 [2020] PIERL 89 [2020] PIERL 88 [2020] PIERL 87 [2019] PIERL 86 [2019] PIERL 85 [2019] PIERL 84 [2019] PIERL 83 [2019] PIERL 82 [2019] PIERL 81 [2019] PIERL 80 [2018] PIERL 79 [2018] PIERL 78 [2018] PIERL 77 [2018] PIERL 76 [2018] PIERL 75 [2018] PIERL 74 [2018] PIERL 73 [2018] PIERL 72 [2018] PIERL 71 [2017] PIERL 70 [2017] PIERL 69 [2017] PIERL 68 [2017] PIERL 67 [2017] PIERL 66 [2017] PIERL 65 [2017] PIERL 64 [2016] PIERL 63 [2016] PIERL 62 [2016] PIERL 61 [2016] PIERL 60 [2016] PIERL 59 [2016] PIERL 58 [2016] PIERL 57 [2015] PIERL 56 [2015] PIERL 55 [2015] PIERL 54 [2015] PIERL 53 [2015] PIERL 52 [2015] PIERL 51 [2015] PIERL 50 [2014] PIERL 49 [2014] PIERL 48 [2014] PIERL 47 [2014] PIERL 46 [2014] PIERL 45 [2014] PIERL 44 [2014] PIERL 43 [2013] PIERL 42 [2013] PIERL 41 [2013] PIERL 40 [2013] PIERL 39 [2013] PIERL 38 [2013] PIERL 37 [2013] PIERL 36 [2013] PIERL 35 [2012] PIERL 34 [2012] PIERL 33 [2012] PIERL 32 [2012] PIERL 31 [2012] PIERL 30 [2012] PIERL 29 [2012] PIERL 28 [2012] PIERL 27 [2011] PIERL 26 [2011] PIERL 25 [2011] PIERL 24 [2011] PIERL 23 [2011] PIERL 22 [2011] PIERL 21 [2011] PIERL 20 [2011] PIERL 19 [2010] PIERL 18 [2010] PIERL 17 [2010] PIERL 16 [2010] PIERL 15 [2010] PIERL 14 [2010] PIERL 13 [2010] PIERL 12 [2009] PIERL 11 [2009] PIERL 10 [2009] PIERL 9 [2009] PIERL 8 [2009] PIERL 7 [2009] PIERL 6 [2009] PIERL 5 [2008] PIERL 4 [2008] PIERL 3 [2008] PIERL 2 [2008] PIERL 1 [2008]
2010-11-02
Wide-Band High Isolation Subharmonically Pumped Resistive Mixer with Active Quasi-Circulator
By
Progress In Electromagnetics Research Letters, Vol. 18, 135-143, 2010
Abstract
A novel subharmonically pumped resistive mixer (SHPRM) with a chip dimension of 0.8×0.81 mm2 is fabricated through a standard 0.18-μm CMOS process. An impedance-transforming active quasi-circulator is monolithically integrated with an nMOS field-effect transistor (FET) to perform up-converter mixing while simultaneously enhancing all port isolation through a broadband operation. The design analysis of impedance-transforming active quasi-circulator is also presented for matching between circulator and resistive transistor. As shown in the measured results, the mixer exhibits a 9-14.5 dB conversion loss. All port-to-port isolations better than 16.5\,dB over a radio frequency (RF) of 10-20 GHz can be achieved.
Citation
Wei-Chih Chien, Chih-Ming Lin, Chien-Hung Liu, Shih-Han Hung, and Yeong-Her Wang, "Wide-Band High Isolation Subharmonically Pumped Resistive Mixer with Active Quasi-Circulator," Progress In Electromagnetics Research Letters, Vol. 18, 135-143, 2010.
doi:10.2528/PIERL10091307
References

1. Itoh, K., A. Iida, Y. Sasaki, and S. Urasaki, "A 40 GHz band monolithic even harmonic mixer with an antiparallel diode pair," IEEE MTT-S Int. Microwave Symp. Dig., Vol. 2, 879-882, 1991.

2. Raman, S., F. Rucky, and G. M. Rebeiz, "A high-performance W-Band uniplanar subharmonic mixer," IEEE Trans. Microwave Theory Tech., Vol. 45, No. 6, 955-962, Jun. 1997.
doi:10.1109/22.588609

3. Chapman, M. W. and S. Raman, "A 60-GHz uniplanar MMIC 4× subharmonic mixer," IEEE Trans. Microwave Theory Tech., Vol. 50, No. 11, 2580-2588, Nov. 2002.
doi:10.1109/TMTT.2002.804638

4. Lin, C.-M., H.-K. Lin, Y.-A. Lai, C.-P. Chang, and Y.-H. Wang, "A 10-40 GHz broadband subharmonic monolithic mixer in 0.18 μm CMOS technology," IEEE Microw. Wireless Compon. Lett., Vol. 19, 95-97, Feb. 2009.

5. Hung, S.-H., W.-C. Chien, C.-M. Lin, Y.-A. Lai, and Y.-H. Wang, "V-band high isolation subharmonic monolithic mixer with hairpin diplexer," Progress In Electromagnetics Research Letters, Vol. 16, 161-169, 2010.
doi:10.2528/PIERL10070701

6. Lin, C.-M., J.-T. Chang, C.-C. Su, S.-H. Hung, and Y.-H. Wang, "A 16-31 GHz miniature quadruple subharmonic monolithic mixer with lumped diplexer," Progress In Electromagnetics Research Letters, Vol. 11, 21-30, 2009.
doi:10.2528/PIERL09072705

7. Shin, S.-C., J.-Y. Huang, K.-Y. Lin, and H.Wang, "A 1.5-9.6 GHz Monolithic active quasi-circulator in 0.18 μm CMOS technology," IEEE Microw. Wireless Compon. Lett., Vol. 18, No. 12, 797-799, Dec. 2008.
doi:10.1109/LMWC.2008.2007703

8. Hara, S., T. Tokumitsu, and M. Aikawa, "Novel unilateral circuits for MMIC circulators," IEEE Trans. Microwave Theory Tech., Vol. 38, No. 10, 1399-1406, Oct. 1990.
doi:10.1109/22.58677

9. Zheng, Y. and C. E. Saavedra, "Active quasi-circulator MMIC using OTA," IEEE Microw. Wireless Compon. Lett., Vol. 19, No. 4, 218-220, Apr. 2009.
doi:10.1109/LMWC.2009.2015500

10. Hsu, H.-M., J.-Y. Chang, J.-G. Su, C.-C. Tsai, S.-C. Wong, C.-W. Chen, K.-R. Peng, S.-P. Ma, C.-H. Chen, T.-H. Yeh, C.-H. Lin, Y.-C. Sun, and C.-Y. Chang, "A 0.18-μm foundry RF CMOS technology with 70-GHz fT for single chip system solutions," IEEE MTT-S Int. Microw. Symp. Dig., 1869-1872, 2001.