Vol. 14
Latest Volume
All Volumes
PIERM 130 [2024] PIERM 129 [2024] PIERM 128 [2024] PIERM 127 [2024] PIERM 126 [2024] PIERM 125 [2024] PIERM 124 [2024] PIERM 123 [2024] PIERM 122 [2023] PIERM 121 [2023] PIERM 120 [2023] PIERM 119 [2023] PIERM 118 [2023] PIERM 117 [2023] PIERM 116 [2023] PIERM 115 [2023] PIERM 114 [2022] PIERM 113 [2022] PIERM 112 [2022] PIERM 111 [2022] PIERM 110 [2022] PIERM 109 [2022] PIERM 108 [2022] PIERM 107 [2022] PIERM 106 [2021] PIERM 105 [2021] PIERM 104 [2021] PIERM 103 [2021] PIERM 102 [2021] PIERM 101 [2021] PIERM 100 [2021] PIERM 99 [2021] PIERM 98 [2020] PIERM 97 [2020] PIERM 96 [2020] PIERM 95 [2020] PIERM 94 [2020] PIERM 93 [2020] PIERM 92 [2020] PIERM 91 [2020] PIERM 90 [2020] PIERM 89 [2020] PIERM 88 [2020] PIERM 87 [2019] PIERM 86 [2019] PIERM 85 [2019] PIERM 84 [2019] PIERM 83 [2019] PIERM 82 [2019] PIERM 81 [2019] PIERM 80 [2019] PIERM 79 [2019] PIERM 78 [2019] PIERM 77 [2019] PIERM 76 [2018] PIERM 75 [2018] PIERM 74 [2018] PIERM 73 [2018] PIERM 72 [2018] PIERM 71 [2018] PIERM 70 [2018] PIERM 69 [2018] PIERM 68 [2018] PIERM 67 [2018] PIERM 66 [2018] PIERM 65 [2018] PIERM 64 [2018] PIERM 63 [2018] PIERM 62 [2017] PIERM 61 [2017] PIERM 60 [2017] PIERM 59 [2017] PIERM 58 [2017] PIERM 57 [2017] PIERM 56 [2017] PIERM 55 [2017] PIERM 54 [2017] PIERM 53 [2017] PIERM 52 [2016] PIERM 51 [2016] PIERM 50 [2016] PIERM 49 [2016] PIERM 48 [2016] PIERM 47 [2016] PIERM 46 [2016] PIERM 45 [2016] PIERM 44 [2015] PIERM 43 [2015] PIERM 42 [2015] PIERM 41 [2015] PIERM 40 [2014] PIERM 39 [2014] PIERM 38 [2014] PIERM 37 [2014] PIERM 36 [2014] PIERM 35 [2014] PIERM 34 [2014] PIERM 33 [2013] PIERM 32 [2013] PIERM 31 [2013] PIERM 30 [2013] PIERM 29 [2013] PIERM 28 [2013] PIERM 27 [2012] PIERM 26 [2012] PIERM 25 [2012] PIERM 24 [2012] PIERM 23 [2012] PIERM 22 [2012] PIERM 21 [2011] PIERM 20 [2011] PIERM 19 [2011] PIERM 18 [2011] PIERM 17 [2011] PIERM 16 [2011] PIERM 14 [2010] PIERM 13 [2010] PIERM 12 [2010] PIERM 11 [2010] PIERM 10 [2009] PIERM 9 [2009] PIERM 8 [2009] PIERM 7 [2009] PIERM 6 [2009] PIERM 5 [2008] PIERM 4 [2008] PIERM 3 [2008] PIERM 2 [2008] PIERM 1 [2008]
2010-10-21
GPU-Accelerated Fundamental Adi-FDTD with Complex Frequency Shifted Convolutional Perfectly Matched Layer
By
Progress In Electromagnetics Research M, Vol. 14, 177-192, 2010
Abstract
This paper presents the graphics processing unit (GPU) accelerated fundamental alternating-direction-implicit finite-difference time-domain (FADI-FDTD) with complex frequency shifted convolutional perfectly matched layer (CFS-CPML). The compact matrix form of the conventional ADI-FDTD method with CFS-CPML is formulated into FADI-FDTD with its right-hand-sides free of matrix operators, resulting in simpler and more concise update equations. Using Compute Unified Device Architecture (CUDA), the FADI-FDTD with CFS-CPML is further incorporated into the GPU to exploit data parallelism. Numerical results show that a much higher efficiency gain of up to 15 times can be achieved.
Citation
Wei Choon Tay, Ding Yu Heh, and Eng Leong Tan, "GPU-Accelerated Fundamental Adi-FDTD with Complex Frequency Shifted Convolutional Perfectly Matched Layer," Progress In Electromagnetics Research M, Vol. 14, 177-192, 2010.
doi:10.2528/PIERM10090605
References

1. Zheng, F., Z. Chen, and J. Zhang, "Toward the development of a three-dimensional unconditionally stable finite-difference time-domain method," IEEE Trans. Microwave Theory Tech., Vol. 48, No. 9, 1550-1558, Sep. 2000.
doi:10.1109/22.869007

2. Namiki, T., "3-D ADI-FDTD method --- Unconditionally stable time-domain algorithm for solving full vector Maxwell's equations," IEEE Trans. Microwave Theory Tech., Vol. 48, No. 10, 1743-1748, Oct. 2000.
doi:10.1109/22.873904

3. Tay, W. C. and E. L. Tan, "Implementation of the Mur first order absorbing boundary condition in e±cient 3-D ADI-FDTD," IEEE Antennas and Propag. Society Int. Symp., 1-4, Jun. 2009.
doi:10.1109/APS.2009.5172059

4. Tay, W. C. and E. L. Tan, "Mur absorbing boundary condition for efficient fundamental 3-D LOD-FDTD," IEEE Microw. Wireless Comp. Lett., Vol. 20, No. 2, 61-63, Feb. 2010.
doi:10.1109/LMWC.2009.2038429

5. Berenger, J. P., "A perfectly matched layer for the absorption of electromagnetic waves," J. Comput. Phys., Vol. 114, 185-200, Oct. 1994.
doi:10.1006/jcph.1994.1159

6. Gedney, S. D., G. Liu, J. Alan Rodden, and A. Zhu, "Perfectly matched layer media with CFS for an unconditionally stable ADI-FDTD method," IEEE Trans. Antennas Propagat., Vol. 48, No. 11, 1554-1559, Nov. 2001.

7. Tan, E. L., "Efficient algorithm for the unconditionally stable," IEEE Microw. Wireless Comp. Lett., Vol. 17, No. 1, 7-9, Jan. 2007.
doi:10.1109/LMWC.2006.887239

8. Tan, E. L., "Fundamental schemes for efficient unconditionally stable implicit finite-difference time-domain methods," IEEE Trans. Antennas Propagat., Vol. 56, No. 1, 170-177, Jan. 2008.
doi:10.1109/TAP.2007.913089

9. Inman, M. J. and A. Z. Elsherbeni, "Programming video cards for computational electromagnetics applications," Antennas Propag. Mag., Vol. 47, 71-78, Dec. 2005.
doi:10.1109/MAP.2005.1608730

10. Tao, Y.-B., H. Lin, and H. J. Lin, "From CPU to GPU: GPU-based electromagnetic computing (GPUECO)," Progress In Electromagnetics Research, Vol. 81, 1-19, 2008.
doi:10.2528/PIER07121302

11. Pharr, M. and R. Fernando, GPUGems2: Programming Techniques for High-performance Graphics and General-purpose Computation, Addison-Wesley, 2005.

12. Owens, J. D., M. Houston, et al. "GPU computing," Proceedings of the IEEE, Vol. 96, No. 5, 879-899, May 2008.
doi:10.1109/JPROC.2008.917757

13. Nvidia Corporation NVIDIA CUDA Programming Guide, Version 2.3, Aug. 2009.

14. Kirk, D. B. and W. Hwu, Programming Massively Parallel Processors: A Hands-on Approach, Morgan Kaufmann, 2010.

15. Isaacson, E., Analysis of Numerical Methods, Dover Publication, 1994.