
Progress In Electromagnetics Research M, Vol. 14, 177–192, 2010

GPU-ACCELERATED FUNDAMENTAL ADI-FDTD WITH
COMPLEX FREQUENCY SHIFTED CONVOLUTIONAL
PERFECTLY MATCHED LAYER

W. C. Tay, D. Y. Heh, and E. L. Tan

School of Electrical and Electronic Engineering
Nanyang Technological University
Nanyang Avenue, Singapore 639798, Singapore

Abstract—This paper presents the graphics processing unit (GPU)
accelerated fundamental alternating-direction-implicit finite-difference
time-domain (FADI-FDTD) with complex frequency shifted convolu-
tional perfectly matched layer (CFS-CPML). The compact matrix form
of the conventional ADI-FDTD method with CFS-CPML is formu-
lated into FADI-FDTD with its right-hand-sides free of matrix oper-
ators, resulting in simpler and more concise update equations. Using
Compute Unified Device Architecture (CUDA), the FADI-FDTD with
CFS-CPML is further incorporated into the GPU to exploit data par-
allelism. Numerical results show that a much higher efficiency gain of
up to 15 times can be achieved.

1. INTRODUCTION

The alternating-direction-implicit finite-difference time-domain (ADI-
FDTD) method [1, 2] has been widely used due to its unconditionally
stable feature where the time step size is unrestricted by the Courant-
Friedrichs-Lewy (CFL) stability condition. However, this comes at
an expense of increasing complexity in its implementation. Besides
having to solve the tridiagonal systems, there are substantial amount
of arithmetic operations and field variables involved on the right-
hand-sides of the update equations, not to mention the huge amount
of memory indexing operations incurred. Moreover, to solve open
structure problems, it is still necessary to employ absorbing boundary

Received 6 September 2010, Accepted 12 October 2010, Scheduled 21 October 2010
Corresponding author: Wei Choon Tay (tayw0034@e.ntu.edu.sg).

178 Tay, Heh, and Tan

conditions (ABCs) [3–5], which involves more of these overheads.
Among the ABCs, the perfectly matched layer (PML) [5] remains
popular due to its effectiveness in absorbing outgoing electromagnetic
waves. In [6], the convolutional perfectly matched layer (CPML)
with complex frequency shifted (CFS) parameters has been introduced
for the unconditionally stable ADI-FDTD method. By implementing
CFS-CPML into the ADI-FDTD algorithm, the already rather
complex ADI update equations becomes even more complicated. With
the inclusion of CFS-CPML parameters, the amount of aforementioned
field variables, arithmetic and memory indexing operations have all
increased considerably. This results in further degradation of the
overall efficiency, which is undesirable.

Recently, an efficient algorithm has been developed for the
ADI-FDTD [7]. Such algorithm is included within a family of
fundamental implicit schemes, which feature similar fundamental
updating structures that are in simplest forms with most efficient
matrix-operator-free right-hand-sides [8]. This leads to fundamental
ADI-FDTD, or FADI-FDTD in short, which results in much simpler
and more concise update equations than the conventional ADI-FDTD
implementation. Nevertheless, despite having a more efficient and
simpler implementation using the FADI-FDTD, continuing efforts are
still being made to further increase the overall efficiency. Of late,
programmable graphics processing units (GPUs) with highly parallel
processors have led to the interest in using GPUs for general purpose
programming [9–12]. Such highly parallel processing feature of the
GPU further motivates us into exploring the implementation of the
FADI-FDTD.

In this paper, we shall present the GPU-accelerated FADI-FDTD
with CFS-CPML. The conventional ADI-FDTD method with CFS-
CPML is first cast into the compact matrix form. Based on [8], the
matrix form is formulated into FADI-FDTD with its right-hand-sides
free of matrix operators, resulting in simpler and more concise update
equations. Using Compute Unified Device Architecture (CUDA), we
further incorporate the FADI-FDTD with CFS-CPML into the GPU
to exploit data parallelism. Numerical results of reflection error and
efficiency gain will be presented.

2. FADI-FDTD WITH CFS-CPML

The PML medium is an artificial region used to absorb outgoing
electromagnetic waves for truncating computational domain. Within
this region, the Maxwell’s equations are expressed in the stretched

Progress In Electromagnetics Research M, Vol. 14, 2010 179

coordinate space as

jωεE = ∇̃×H (1a)

−jωµH = ∇̃×E (1b)

where

∇̃ = x̂
1
sx

∂

∂x
+ ŷ

1
sy

∂

∂y
+ ẑ

1
sz

∂

∂z
, (2)

and the stretched coordinate metric is given as

sζ = κζ +
σζ

αζ + jωε
, ζ = x, y, z. (3)

We first write the conventional ADI-FDTD method with CFS-
CPML [6] in compact matrix form as
(
I− ∆t

2

(
A′ +

L
2

))
un+ 1

2 =
(
I +

∆t

2

(
B′ +

L
2

))
un+

∆t

2
WΨn (4a)

Ψn+ 1
2 = CΨn + Dun+ 1

2 (4b)(
I− ∆t

2

(
B′ +

L
2

))
un+1 =

(
I +

∆t

2

(
A′ +

L
2

))
un+ 1

2 +
∆t

2
WΨn+ 1

2 (4c)

Ψn+1 = CΨn+ 1
2 + Dun+1 (4d)

where

u = [Ex Ey Ez Hx Hy Hz]
T

,

A′ =

0 0 0 0 0 1
εκy

∂
∂y

0 0 0 1
εκz

∂
∂z 0 0

0 0 0 0 1
εκx

∂
∂x 0

0 1
µκz

∂
∂z 0 0 0 0

0 0 1
µκx

∂
∂x 0 0 0

1
µκy

∂
∂y 0 0 0 0 0

,

B′ =

0 0 0 0 −1
εκz

∂
∂z 0

0 0 0 0 0 −1
εκx

∂
∂x

0 0 0 −1
εκy

∂
∂y 0 0

0 0 −1
µκy

∂
∂y 0 0 0

−1
µκz

∂
∂z 0 0 0 0 0

0 −1
µκx

∂
∂x 0 0 0 0

,

180 Tay, Heh, and Tan

L =

−σ
ε 0 0 0 0 0

0 −σ
ε 0 0 0 0

0 0 −σ
ε 0 0 0

0 0 0 −σ∗
µ 0 0

0 0 0 0 −σ∗
µ 0

0 0 0 0 0 −σ∗
µ

,

W =
[1

ε Θ O3×6

O3×6
1
µΘ

]
, Θ =

[1 −1 0 0 0 0
0 0 1 −1 0 0
0 0 0 0 1 −1

]
,

C =
[

Ce O6×6

O6×6 Ch

]
, D =

[
O6×3 De

Dh O6×3

]
, Ψ = [ΨE ΨH]T ,

Ce =

cy 0 0 0 0 0
0 cz 0 0 0 0
0 0 cz 0 0 0
0 0 0 cx 0 0
0 0 0 0 cx 0
0 0 0 0 0 cy

, De =

0 0 dy
∂
∂y

0 dz
∂
∂z 0

dz
∂
∂z 0 0
0 0 dx

∂
∂x

0 dx
∂
∂x 0

dy
∂
∂y 0 0

,

Ch =

cz 0 0 0 0 0
0 cy 0 0 0 0
0 0 cx 0 0 0
0 0 0 cz 0 0
0 0 0 0 cy 0
0 0 0 0 0 cx

, Dh =

0 dz
∂
∂z 0

0 0 dy
∂
∂y

0 0 dx
∂
∂x

dz
∂
∂z 0 0

dy
∂
∂y 0 0
0 dx

∂
∂x 0

,

ΨE =
[
ψexy ψexz ψeyz ψeyx ψezx ψezy

]
,

ΨH =
[
ψhxz ψhxy ψhyx ψhyz ψhzy ψhzx

]
.

Op×q is the null matrix with p × q dimension, ∆t is the time step,
σ and σ∗ are the electric and magnetic conductivities, respectively.
Note that σ is different from σζ in (3), with the latter referring to the
conductivity profile of the PML. cζ and dζ are the update coefficients
for Ψ in the PML regions defined as

cζ = e
−(

σζ
κζ

+αζ)∆t
2ε , dζ =

σζ

σζκζ + κ2
ζαζ

(
cζ − 1

)
. (5)

The conventional ADI-FDTD with CFS-CPML still involves
matrix operators A′ and B′ on the right-hand-sides (c.f. (4a) and (4c)).
To remove A′ and B′ from the right-hand-sides, we now formulate the

Progress In Electromagnetics Research M, Vol. 14, 2010 181

FADI-FDTD scheme as

vn = ũn − vn− 1
2 +

∆t

2
WΨn (6a)

(
1
2
I− ∆t

4

(
A′ +

L
2

))
ũn+ 1

2 = vn (6b)

Ψn+ 1
2 = CΨn +

D
2

ũn+ 1
2 (6c)

vn+ 1
2 = ũn+ 1

2 − vn +
∆t

2
WΨn+ 1

2 (6d)
(

1
2
I− ∆t

4

(
B′ +

L
2

))
ũn+1 = vn+ 1

2 (6e)

Ψn+1 = CΨn+ 1
2 +

D
2

ũn+1 (6f)

where

ũ =
[
Ẽx Ẽy Ẽz H̃x H̃y H̃z

]T
,

v = [ex ey ez hx hy hz]
T

with initialization v−
1
2 = (I − ∆t

2 (B′ + L
2))u0 in the main grid. Note

that ũ = 2u and v’s serve as temporary auxiliary field variables which
do not require additional memory [8]. It can be seen now that the
algorithm has its right-hand-sides free of matrix operators A′ and B′.
This results in reduction of the number of update coefficients and field
variables (shown later).

Assuming σ∗ = 0, the update equations for ex, hz, Ẽx, H̃z and
ψexy for the first sub-step (6a)–(6c) are as follows (other field equations
can be written down by permuting the indices)

en
x

i+1
2 ,j,k

= Ẽn
x

i+1
2 ,j,k

− e
n− 1

2
x

i+1
2 ,j,k

+ a1

(
ψn

exy
i+1

2 ,j,k

− ψn
exz

i+1
2 ,j,k

)
(7a)

hn
z
i+1

2 ,j+1
2 ,k

= H̃n
z
i+1

2 ,j+1
2 ,k
− h

n− 1
2

z
i+1

2 ,j+1
2 ,k

+a2

(
ψn

hzy
i+1

2 ,j+1
2 ,k

− ψn
hzx

i+1
2 ,j+1

2 ,k

)
(7b)

Ẽ
n+ 1

2
x

i+1
2 ,j,k

=
2
β

en
x

i+1
2 ,j,k

+
a1,y

κyjβ

(
H̃

n+ 1
2

z
i+1

2 ,j+1
2 ,k
− H̃

n+ 1
2

z
i+1

2 ,j− 1
2 ,k

)
(7c)

H̃
n+ 1

2
z
i+1

2 ,j+1
2 ,k

= 2hn
z
i+1

2 ,j+1
2 ,k

+
a2,y

κy
j+1

2

(
Ẽ

n+ 1
2

x
i+1

2 ,j+1,k
− Ẽ

n+ 1
2

x
i+1

2 ,j,k

)
(7d)

ψ
n+ 1

2
exy

i+1
2 ,j,k

= cyjψ
n
exy

i+1
2 ,j,k

+
dyj

2∆y

(
H̃

n+ 1
2

z
i+1

2 ,j+1
2 ,k
− H̃

n+ 1
2

z
i+1

2 ,j− 1
2 ,k

)
(7e)

182 Tay, Heh, and Tan

where

a1 =
∆t

2ε
, a2 =

∆t

2µ
, a1,ζ =

a1

∆ζ
, a2,ζ =

a2

∆ζ
, β =

(
1 + a1

σ

2

)
,

and ∆ζ is the cell size. Note that for simplicity, we have omitted the
subscript indices for media parameters ε, µ and σ.

By substituting (7d) into (7c), we arrive at the implicit update
equation of Ex as

−a1,ya2,y

2κyjκy
j− 1

2

β
Ẽ

n+ 1
2

x
i+1

2 ,j−1,k
− a1,ya2,y

2κyjκy
j+1

2

β
Ẽ

n+ 1
2

x
i+1

2 ,j+1,k
+

γyj

2
Ẽ

n+ 1
2

x
i+1

2 ,j,k

=
1
β

en
x

i+1
2 ,j,k

+
a1,y

κyjβ

(
hn

z
i+1

2 ,j+1
2 ,k
− hn

z
i+1

2 ,j− 1
2 ,k

)
(8)

with

γyj = 1 +
a1,ya2,y

κyjκy
j+1

2

β
+

a1,ya2,y

κyjκy
j− 1

2

β
.

For the second sub-step, the update equations for ex, hy, Ẽx, H̃y

and ψexz are as follows (other field equations can be written down by
permuting the indices):

e
n+ 1

2
x

i+1
2 ,j,k

= Ẽ
n+ 1

2
x

i+1
2 ,j,k

− en
x

i+1
2 ,j,k

+ a1

(
ψ

n+ 1
2

exy
i+1

2 ,j,k
− ψ

n+ 1
2

exz
i+1

2 ,j,k

)
(9a)

h
n+ 1

2
y

i+1
2 ,j,k+1

2

= H̃
n+ 1

2
y

i+1
2 ,j,k+1

2

− hn
y

i+1
2 ,j,k+1

2

+a2

(
ψ

n+ 1
2

hyx
i+1

2 ,j,k+1
2

− ψ
n+ 1

2
hyz

i+1
2 ,j,k+1

2

)
(9b)

Ẽn+1
x

i+1
2 ,j,k

=
2
β

e
n+ 1

2
x

i+1
2 ,j,k

− a1,z

κzk
β

(
H̃n+1

y
i+1

2 ,j,k+1
2

− H̃n+1
y

i+1
2 ,j,k− 1

2

)
(9c)

H̃n+1
y

i+1
2 ,j,k+1

2

= 2h
n+ 1

2
y

i+1
2 ,j,k+1

2

− a2,z

κz
k+1

2

(
Ẽn+1

x
i+1

2 ,j,k+1
− Ẽn+1

x
i+1

2 ,j,k

)
(9d)

ψn+1
exz

i+1
2 ,j,k

= czk
ψ

n+ 1
2

exz
i+1

2 ,j,k
+

dzk

2∆z

(
H̃n+1

y
i+1

2 ,j,k+1
2

− H̃n+1
y

i+1
2 ,j,k− 1

2

)
(9e)

Using similar approach, the implicit update equation for Ex is
derived as

−a1,za2,z

2κzk
κz

k− 1
2

β
Ẽn+1

x
i+1

2 ,j,k−1
− a1,za2,z

2κzk
κz

k+1
2

β
Ẽn+1

x
i+1

2 ,j,k+1
+

γzk

2
Ẽn+1

x
i+1

2 ,j,k

=
1
β

e
n+ 1

2
x

i+1
2 ,j,k

− a1,z

κzk
β

(
h

n+ 1
2

y
i+1

2 ,j,k+1
2

− h
n+ 1

2
y

i+1
2 ,j,k− 1

2

)
(10)

Progress In Electromagnetics Research M, Vol. 14, 2010 183

with

γzk
= 1 +

a1,za2,z

κzk
κz

k+1
2

β
+

a1,za2,z

κzk
κz

k− 1
2

β
.

For comparison, the update equations for the conventional ADI-
FDTD with CFS-CPML is provided in Appendix A. We can see that
in FADI-FDTD, ψ is only required in the auxilliary field update
equations (c.f. (7a), (7b), (9a) and (9b)) and NOT in the implicit
update equations of electric fields (c.f. (8) and (10)). Not only that, ψe

and ψh are well separated in the FADI-FDTD update equations (i.e.,
ψe is only needed in electric field update equation while ψh is only
needed in magnetic field update equation). On the other hand, for
conventional ADI-FDTD, both ψe and ψh are needed simultaneously
at the implicit electric field update equations as evident from (A4)
and (A5). Furthermore, the number of overall right-hand-side terms
in the conventional ADI-FDTD update equations are higher compared
to that of FADI-FDTD, which results in more arithmetic and memory
indexing operations. For all these advantages, our FADI-FDTD is
very attractive for its better conciseness, efficiency and programming
simplicity. To further increase the efficiency, we incorporate the FADI-
FDTD into GPU using CUDA as will be shown in the subsequent
sections.

3. GPU-ACCELERATED FADI-FDTD WITH CFS-CPML

3.1. CUDA Architecture

CUDA is a parallel computing architecture developed by NVIDIA [11–
14], which is accessible to software developers through industry
standard programming languages. A GPU with CUDA capabilities
has a set of build-in streaming multiprocessors. Each streaming
multiprocessor consists of a shared memory (which can be used to
share data between the threads within a thread block), a set of 32-
bit registers and read-only caches. Each multiprocessor contains 8
streaming processors, and every streaming processor supports parallel
executing model of the single-instruction multiple-data (SIMD). The
Random Access Memory (RAM) located on the GPU card serves as
the global memory used to store the massive data.

3.2. CUDA Programming Model

A CUDA program is executed on both the host (CPU) and device
(GPU). The set of instructions that exhibit rich amount of data
parallelism are implemented in the device code, whereas the set of

184 Tay, Heh, and Tan

Host

Kernel
1

Kernel
2

Device (Grid)

Block
 (0,0)

Block
 (0,1)

Block
 (0,2)

Block
 (1,0)

Block
 (1,1)

Block
 (1,2)

Device (Grid)

Block
 (0,0)

Block
 (0,1)

Block
 (0,2)

Block
 (1,0)

Block
 (1,1)

Block
 (1,2)

Block (0,2)

Figure 1. Execution of a typical CUDA program.

instructions with little or no data parallelism are implemented in host
code.

The execution of a typical CUDA program (illustrated in Fig. 1)
starts with host execution [14]. When a kernel function is invoked,
the execution is moved to a device, where a large number of threads
are generated to take advantage of abundant data parallelism. All the
threads that are generated by a kernel are organized as a grid of thread
blocks and each block consists of a maximum of 512 threads. The grid
of thread blocks is then executed on the GPU by assigning blocks
for execution on the streaming multiprocessors. When the execution
of a kernel is completed, the corresponding grid terminates and the
execution returns to the host until another kernel is invoked.

3.3. Parallelization for Gaussian Elimination Using LU
Factorization

We make use of the 2-dimensional grid and 1-dimensional threads for
the field vector Ex field along the x-, y-, and z-directions. In the first
procedure of the FADI-FDTD update equations, Ex

i+1
2 ,j+1,k

requires
the updated value of Ex

i+1
2 ,j,k

along the y-direction. This makes Ex

along x- and z-directions possible for parallelism. Conversely, in the
second procedure, Ex

i+1
2 ,j,k+1

requires the updated value of Ex
i+1

2 ,j,k

along the z-direction. This in turn makes Ex along x- and y-directions
possible for parallelism. The parallelization of FADI-FDTD is realized
through gaussian elimination using LU Factorization method [15]. In
order to exploit the data parallelism in these directions, we have

Progress In Electromagnetics Research M, Vol. 14, 2010 185

Grid [2-D]
y
-d

ir
ec

ti
o
n

z-direction

Block
(0,0)

Block
(0,2)

Block
(0,1)

Block
(1,0)

Block
(1,2)

Block
(1,1)

Block
(2,0)

Block
(2,2)

Block
(2,1)

GPU

Block (0,2)

x-direction

Figure 2. CUDA threads organization for Ex.

arranged the field vector for Ex in CUDA according to the arrangement
shown in Fig. 2. For instance, in the first procedure, blocks from the
same row are run in parallel (data parallelism in x- and z-directions).
Starting from the first row, the process will move to the subsequent
row after all blocks from the preceeding row are processed. This row
by row procedure will continue until the maximum number of grids in
y-direction is reached. On the other hand, in the second procedure,
blocks from the same column are run in parallel (data parallelism in
x- and y-directions). The process is repeated column by column until
the maximum number of grids in z-direction is reached.

The update procedure of the GPU-accelerated FADI-FDTD with
CFS-CPML using CUDA is depicted as a flowchart in Fig. 3. Note that
je and ke are the number of cells in the y- and z-direction, respectively.
For the update equations of the E fields, we only show those of Ex.
The remaining procedures for Ey and Ez fields can be obtained by
permutting the indices. As mentioned, the ψ’s of FADI-FDTD are
now included in the auxilliary update equations. Therefore, the main
update equations of E fields are the same as the FADI-FDTD without
CFS-CPML, which feature great simplicity and convenience.

4. NUMERICAL RESULTS

In this section, the performance of the CPU and GPU-accelerated
FADI-FDTD with CFS-CPML in free space are illustrated through
numerical simulations. The computation domain has a dimension of
42 × 42 × 42 and cell size ∆x = ∆y = ∆z = 1.0 mm. Ten cells of
PML are applied to all six sides of the lattice. Within the PML, the

186 Tay, Heh, and Tan

for n = 1 : nmax

kernel update aux. E & H fields

first procedure

for j = 1 : je

kernel forward elimination
of tridiagonal matrix for Ex

n = n + 1

second procedure

kernel update Ψ

kernel update aux. E & H fields

kernel update Ψ

n = nmax?
No

Yes

end

for k = 1 : ke

kernel forward elimination
of tridiagonal matrix for Ex

for k = ke-1 : 1

kernel backward substitution
of tridiagonal matrix for Ex

for j = je-1 : 1

kernel backward substitution
of tridiagonal matrix for Ex

Figure 3. Flowchart of FADI-FDTD with CFS-CPML as
implemented on GPU.

consitutive parameters were scaled using polynomial scaling

σζ(ζ) =
σζmax | ζ − ζ0 |m

δm
(11)

κζ(ζ) = 1 + (κζmax − 1)
| ζ − ζ0 |m

δm
(12)

Progress In Electromagnetics Research M, Vol. 14, 2010 187

where δ is the thickness of the PML absorber, ζ0 is the interface to free
space and m is the order of the polynomial.

A choice for σζmax that will minimize reflection is expressed as [5]

σζmax = σopt ≈ m + 1
150π∆ζ

. (13)

For our study, the PML parameters are σζmax = σopt = 10.61 S/m,
κζmax = 15, αζ = 0.08 S/m, and m = 4.

A small dipole source excitation is located at the center of the
computation region. The source is a modulated Gaussian pulse applied
to the Ez component as

Jz = e−(
t−t0

τ
)2 sin (2πfc(t− t0)), (14)

where τ = 160 ps, t0 = 3τ , fc = 3.175GHz.
The reflection error for PML is studied with the observation point

located ten cells away from the source and one cell away from the PML
interface. The reflection error for the PML is evaluated by

R = 20 log10

(|E −Eref |
max |Eref |

)
(15)

where Eref is the reference value calculated in a grid large enough so
that any reflection from the boundary is isolated.

For comparison, Fig. 4 presents the electric field’s time domain
characteristic at the observation point for both CPU and GPU-
accelerated FADI-FDTD with CFS-CPML. CFLN is chosen as 4, where
CFLN = ∆t/∆tCFL and ∆tCFL = 1.926 ps is the CFL limit in Yee’s
explicit FDTD method. The good agreement indicates that the GPU-
accelerated FADI-FDTD is correct although the GPU adopts single
precision floating-point format as compared to the double-precision
floating-point format of the CPU.

0 0.5 1 1.5

0

0.5

1

 -0.3

Time (ns)

N
o

rm
a
li

z
e
d

 E
z
 [

V
/m

]

FADI (CPU)

FADI (GPU)

Figure 4. Comparison of time domain waveforms for electric field at
observation point (CFLN = 4).

188 Tay, Heh, and Tan

0 0.5 1 1.5
-180

-160

-140

-120

-100

-80

-60

Time (ns)

R
e
fl

e
c
ti

o
n

 E
rr

o
r

(d
B

)

(a)

FADI (CPU)

FADI (GPU)

Yee FDTD

0 0.5 1 1.5
-180

-160

-140

-120

-100

-80

-60

Time (ns)

R
e
fl

e
c
ti

o
n

 E
rr

o
r

(d
B

)

(b)

FADI (CPU)

FADI (GPU)

0 0.5 1 1.5
-180

-160

-140

-120

-100

-80

-60

Time (ns)

R
e
fl

e
c
ti

o
n

 E
rr

o
r

(d
B

)

(c)

FADI (CPU)

FADI (GPU)

Figure 5. Reflection errors of CPU and GPU-accelerated FADI-
FDTD with CFS-CPML for (a) CFLN = 1, (b) CFLN = 2 and (c)
CFLN = 4.

Figure 5 illustrates the reflection errors of CPU and GPU-
accelerated FADI-FDTD with CFS-CPML for various CFLNs. The
maximum amplitude of |Eref | used in (15) for CFLN 1, 2 and 4 are
given as 0.0655, 0.0691 and 0.0857 V/m, respectively. For CFLN = 1,
the FADI- and Yee-FDTD with CFS-CPML exhibit reflection errors
of the same order. We also observe that the reflection errors computed
using both CPU and GPU implementations agree well with each other,
and the maximum reflection error is around −75 dB for CFLN = 4.
Such low reflection error shows the effectiveness of the CFS-CPML
for absorbing outgoing electromagnetic wave. Both CPU and GPU
implementations are equally effective, with greater efficiency for the
latter. The slight discrepancies of reflection errors are the result of
single-precision floating-point format currently supported by the low
cost GPU.

Progress In Electromagnetics Research M, Vol. 14, 2010 189

Table 1. Comparison of CPU and GPU time for FADI-FDTD
and Yee-FDTD with CFS-CPML (For FADI-FDTD, CFLN = 4, 250
iterations. For Yee-FDTD, CFLN = 1, 1000 iterations)

Scheme
Domain CPU GPU

Speedup
Size Time (s) Time (s)

FADI-FDTD 1003 679.53 60.74 11.19
with 1503 2842.11 201.31 14.12

CFS-CPML 2003 6828.12 463.88 14.72
Yee-FDTD 1003 1011.70 79.92 12.66

with 1503 4810.23 263.27 18.27
CFS-CPML 2003 11504.21 621.39 18.51

We further compare the CPU and GPU time of the FADI-FDTD
with CFS-CPML, c.f. Table 1. The numerical simulation is performed
for 250 iterations at CFLN = 4 in various computation domains.
Note that 250 time iterations at CFLN = 4 is more than sufficient
for the entire wave motion to reach the PML layer. The computing
platform is C++ environment with Intel Dual Core 2.66 GHz processor
and a NVIDIA GeForce GTS250 GPU. From Table 1, we find that
the efficiency gain achieved by the GPU over CPU is approximately
11 ∼ 15 times. It is thus ascertained that substantial gain is achievable
for GPU by exploiting data parallelism. The numerical results for
Yee-FDTD with CFS-CPML are also included in Table 1, for 1000
iterations at CFLN = 1. The efficiency gain achieved by the GPU
over CPU of Yee-FDTD is slightly higher than that of FADI-FDTD.
This is because Yee-FDTD is a fully explicit scheme which allow data
parallelism in three directions (x, y and z) while for FADI-FDTD,
the data parallelism is in two directions as discussed in Section 3.3.
Nevertheless, the overall CPU and GPU time incurred by Yee-FDTD
is still higher than that of FADI-FDTD, due to its restricted time step
caused by the CFL stability condition.

5. CONCLUSION

This paper has presented the GPU-accelerated FADI-FDTD with CFS-
CPML. The compact matrix form of the conventional ADI-FDTD
method with CFS-CPML has been formulated into FADI-FDTD with
its right-hand-sides free of matrix operators, resulting in simpler and
more concise update equations. Using CUDA, the FADI-FDTD with

190 Tay, Heh, and Tan

CFS-CPML has been further incorporated into the GPU to exploit
data parallelism. Numerical results have shown that a much higher
efficiency gain of up to 15 times can be achieved.

Like FADI-FDTD, the locally one-dimensional (LOD) FDTD with
CFS-CPML could also be formulated in the most fundamental form
with concise matrix-operator-free right-hand-sides. However, more
work is required to simplify the equations further and this shall be
addressed in future work.

APPENDIX A. (UPDATE EQUATIONS FOR
CONVENTIONAL ADI-FDTD)

Based on (4a)–(4b), the update equations for conventional ADI-FDTD
from n to n + 1

2 are written as (other field equations can be written
down by permuting the indices)

E
n+ 1

2
x

i+1
2 ,j,k

=
χ

β
En

x
i+1

2 ,j,k
− a1,z

κzk
β

(
Hn

y
i+1

2 ,j,k+1
2

−Hn
y

i+1
2 ,j,k− 1

2

)

+
a1,y

κyjβ

(
H

n+ 1
2

z
i+1

2 ,j+1
2 ,k
−H

n+ 1
2

z
i+1

2 ,j− 1
2 ,k

)

+
a1

β

(
ψn

exy
i+1

2 ,j,k

− ψn
exz

i+1
2 ,j,k

)
(A1)

H
n+ 1

2
z
i+1

2 ,j+1
2 ,k

= Hn
z
i+1

2 ,j+1
2 ,k
− a2,x

κx
i+1

2

(
En

y
i+1,j+1

2 ,k
− En

y
i,j+1

2 ,k

)

+
a2,y

κy
j+1

2

(
E

n+ 1
2

x
i+1

2 ,j+1,k
−E

n+ 1
2

x
i+1

2 ,j,k

)

+a2

(
ψn

hzy
i+1

2 ,j+1
2 ,k

− ψn
hzx

i+1
2 ,j+1

2 ,k

)
(A2)

ψ
n+ 1

2
exy

i+1
2 ,j,k

= cyjψ
n
exy

i+1
2 ,j,k

+
dyj

∆y

(
H

n+ 1
2

z
i+1

2 ,j+1
2 ,k
−H

n+ 1
2

z
i+1

2 ,j− 1
2 ,k

)
(A3)

where χ =
(
1− a1

σ
2

)
.

By substituting (A2) into (A1), the implicit update equation of

Progress In Electromagnetics Research M, Vol. 14, 2010 191

Ex can be obtained as
−a1,ya2,y

κyjκy
j− 1

2

β
E

n+ 1
2

x
i+1

2 ,j−1,k
− a1,ya2,y

κyjκy
j+1

2

β
E

n+ 1
2

x
i+1

2 ,j+1,k
+ γyjE

n+ 1
2

x
i+1

2 ,j,k

=
χ

β
En

x
i+1

2 ,j,k
− a1,z

κzk
β

(
Hn

y
i+1

2 ,j,k+1
2

−Hn
y

i+1
2 ,j,k− 1

2

)

− a1,ya2,x

κyjκx
i+1

2

β

(
En

y
i+1,j+1

2 ,k
− En

y
i,j+1

2 ,k
− En

y
i+1,j− 1

2 ,k
+ En

y
i,j− 1

2 ,k

)

+
a1,y

κyjβ

(
Hn

z
i+1

2 ,j+1
2 ,k
−Hn

z
i+1

2 ,j− 1
2 ,k

)
+

a1

β

(
ψn

exy
i+1

2 ,j,k

−ψn
exz

i+1
2 ,j,k

)

+
a1,ya2

κyjβ

(
ψn

hzy
i+1

2 ,j+1
2 ,k

−ψn
hzx

i+1
2 ,j+1

2 ,k

−ψn
hzy

i+1
2 ,j− 1

2 ,k

+ψn
hzx

i+1
2 ,j− 1

2 ,k

)
(A4)

For the second procedure, the implicit update equation of Ex can
be derived from (4c) as (other field equations can be written down by
permuting the indices)
−a1,za2,z

κzk
κz

k− 1
2

β
En+1

x
i+1

2 ,j,k−1
− a1,za2,z

κzk
κz

k+1
2

β
En+1

x
i+1

2 ,j,k+1
+ γzk

En+1
x

i+1
2 ,j,k

=
χ

β
E

n+ 1
2

x
i+1

2 ,j,k
+

a1,y

κyjβ

(
H

n+ 1
2

z
i+1

2 ,j+1
2 ,k
−H

n+ 1
2

z
i+1

2 ,j− 1
2 ,k

)

− a1,za2,x

κzk
κx

i+1
2

β

(
E

n+ 1
2

z
i+1,j,k+1

2

− E
n+ 1

2
z
i,j,k+1

2

−E
n+ 1

2
z
i+1,j,k− 1

2

+ E
n+ 1

2
z
i,j,k− 1

2

)

− a1,z

κzk
β

(
H

n+ 1
2

y
i+1

2 ,j,k+1
2

−H
n+ 1

2
y

i+1
2 ,j,k− 1

2

)
+

a1

β

(
ψ

n+ 1
2

exy
i+1

2 ,j,k
−ψ

n+ 1
2

exz
i+1

2 ,j,k

)

−a1,za2

κzk
β

(
ψ

n+1
2

hyx
i+1

2 ,j,k+1
2

−ψ
n+1

2
hyz

i+1
2 ,j,k+1

2

−ψ
n+1

2
hyx

i+1
2 ,j,k−1

2

+ψ
n+1

2
hyz

i+1
2 ,j,k−1

2

)
(A5)

REFERENCES

1. Zheng, F., Z. Chen, and J. Zhang, “Toward the development of
a three-dimensional unconditionally stable finite-difference time-
domain method,” IEEE Trans. Microwave Theory Tech., Vol. 48,
No. 9, 1550–1558, Sep. 2000.

2. Namiki, T., “3-D ADI-FDTD method — Unconditionally
stable time-domain algorithm for solving full vector Maxwell’s
equations,” IEEE Trans. Microwave Theory Tech., Vol. 48, No. 10,
1743–1748, Oct. 2000.

3. Tay, W. C. and E. L. Tan, “Implementation of the Mur first order
absorbing boundary condition in efficient 3-D ADI-FDTD,” IEEE
Antennas and Propag. Society Int. Symp., 1–4, Jun. 2009.

192 Tay, Heh, and Tan

4. Tay, W. C. and E. L. Tan, “Mur absorbing boundary condition for
efficient fundamental 3-D LOD-FDTD,” IEEE Microw. Wireless
Comp. Lett., Vol. 20, No. 2, 61–63, Feb. 2010.

5. Berenger, J. P., “A perfectly matched layer for the absorption
of electromagnetic waves,” J. Comput. Phys., Vol. 114, 185–200,
Oct. 1994.

6. Gedney, S. D., G. Liu, J. Alan Rodden, and A. Zhu, “Perfectly
matched layer media with CFS for an unconditionally stable
ADI-FDTD method,” IEEE Trans. Antennas Propagat., Vol. 49,
No. 11, 1554–1559, Nov. 2001.

7. Tan, E. L., “Efficient algorithm for the unconditionally stable
3-D ADI-FDTD method,” IEEE Microw. Wireless Comp. Lett.,
Vol. 17, No. 1, 7–9, Jan. 2007.

8. Tan, E. L., “Fundamental schemes for efficient unconditionally
stable implicit finite-difference time-domain methods,” IEEE
Trans. Antennas Propagat., Vol. 56, No. 1, 170–177, Jan. 2008.

9. Inman, M. J. and A. Z. Elsherbeni, “Programming video cards for
computational electromagnetics applications,” Antennas Propag.
Mag., Vol. 47, 71–78, Dec. 2005.

10. Tao, Y.-B., H. Lin, and H. J. Lin, “From CPU to GPU:
GPU-based electromagnetic computing (GPUECO),” Progress In
Electromagnetics Research, Vol. 81, 1–19, 2008.

11. Pharr, M. and R. Fernando, GPUGems2: Programming
Techniques for High-performance Graphics and General-purpose
Computation, Addison-Wesley, 2005.

12. Owens, J. D., M. Houston, et al., “GPU computing,” Proceedings
of the IEEE, Vol. 96, No. 5, 879–899, May 2008.

13. Nvidia Corporation, NVIDIA CUDA Programming Guide,
Version 2.3, Aug. 2009.

14. Kirk, D. B. and W. Hwu, Programming Massively Parallel
Processors: A Hands-on Approach, Morgan Kaufmann, 2010.

15. Isaacson, E., Analysis of Numerical Methods, Dover Publication,
1994.

