Vol. 27
Latest Volume
All Volumes
PIERB 109 [2024] PIERB 108 [2024] PIERB 107 [2024] PIERB 106 [2024] PIERB 105 [2024] PIERB 104 [2024] PIERB 103 [2023] PIERB 102 [2023] PIERB 101 [2023] PIERB 100 [2023] PIERB 99 [2023] PIERB 98 [2023] PIERB 97 [2022] PIERB 96 [2022] PIERB 95 [2022] PIERB 94 [2021] PIERB 93 [2021] PIERB 92 [2021] PIERB 91 [2021] PIERB 90 [2021] PIERB 89 [2020] PIERB 88 [2020] PIERB 87 [2020] PIERB 86 [2020] PIERB 85 [2019] PIERB 84 [2019] PIERB 83 [2019] PIERB 82 [2018] PIERB 81 [2018] PIERB 80 [2018] PIERB 79 [2017] PIERB 78 [2017] PIERB 77 [2017] PIERB 76 [2017] PIERB 75 [2017] PIERB 74 [2017] PIERB 73 [2017] PIERB 72 [2017] PIERB 71 [2016] PIERB 70 [2016] PIERB 69 [2016] PIERB 68 [2016] PIERB 67 [2016] PIERB 66 [2016] PIERB 65 [2016] PIERB 64 [2015] PIERB 63 [2015] PIERB 62 [2015] PIERB 61 [2014] PIERB 60 [2014] PIERB 59 [2014] PIERB 58 [2014] PIERB 57 [2014] PIERB 56 [2013] PIERB 55 [2013] PIERB 54 [2013] PIERB 53 [2013] PIERB 52 [2013] PIERB 51 [2013] PIERB 50 [2013] PIERB 49 [2013] PIERB 48 [2013] PIERB 47 [2013] PIERB 46 [2013] PIERB 45 [2012] PIERB 44 [2012] PIERB 43 [2012] PIERB 42 [2012] PIERB 41 [2012] PIERB 40 [2012] PIERB 39 [2012] PIERB 38 [2012] PIERB 37 [2012] PIERB 36 [2012] PIERB 35 [2011] PIERB 34 [2011] PIERB 33 [2011] PIERB 32 [2011] PIERB 31 [2011] PIERB 30 [2011] PIERB 29 [2011] PIERB 28 [2011] PIERB 27 [2011] PIERB 26 [2010] PIERB 25 [2010] PIERB 24 [2010] PIERB 23 [2010] PIERB 22 [2010] PIERB 21 [2010] PIERB 20 [2010] PIERB 19 [2010] PIERB 18 [2009] PIERB 17 [2009] PIERB 16 [2009] PIERB 15 [2009] PIERB 14 [2009] PIERB 13 [2009] PIERB 12 [2009] PIERB 11 [2009] PIERB 10 [2008] PIERB 9 [2008] PIERB 8 [2008] PIERB 7 [2008] PIERB 6 [2008] PIERB 5 [2008] PIERB 4 [2008] PIERB 3 [2008] PIERB 2 [2008] PIERB 1 [2008]
2010-12-02
Magnetic Field and Current Are Zero Inside Ideal Conductors
By
Progress In Electromagnetics Research B, Vol. 27, 187-212, 2011
Abstract
We prove a theorem on the magnetic energy minimum in a system of perfect, or ideal, conductors. It is analogous to Thomson's theorem on the equilibrium electric field and charge distribution in a system of conductors. We first prove Thomson's theorem using a variational principle. Our new theorem is then derived by similar methods. We find that magnetic energy is minimized when the current distribution is a surface current density with zero interior magnetic field; perfect conductors are perfectly diamagnetic. The results agree with currents in superconductors being confined near the surface. The theorem implies a generalized force that expels current and magnetic field from the interior of a conductor that loses its resistivity. Examples of solutions that obey the theorem are presented.
Citation
Miguel C. N. Fiolhais, Hanno Essén, Constanca Providencia, and Arne B. Nordmark, "Magnetic Field and Current Are Zero Inside Ideal Conductors," Progress In Electromagnetics Research B, Vol. 27, 187-212, 2011.
doi:10.2528/PIERB10082701
References

1. Carr, Jr., W. J., "Macroscopic theory of superconductors," Phys. Rev. B, Vol. 23, 3208-3212, 1981.
doi:10.1103/PhysRevB.23.3208

2. Jackson, J. D., Classical Electrodynamics, 3 Ed., John Wiley & Sons, New York, 1999.

3. Coulson, C. A., Electricity, 3 Ed., Oliver and Boyd, Edinburgh, 1953.

4. Panofsky, W. K. H. and M. Phillips, Classical Electricity and Magnetism, 2 Ed., Dover, New York, 2005.

5. Landau, L. D. and E. M. Lifshitz, Electrodynamics of Continuous Media, 2 Ed., Butterworth-Heinemann, Oxford, 1984.

6. Bakhoum, E. G., "Proof of Thomson's theorem of electrostatics," J. Electrostatics, Vol. 66, 561-563, 2008.
doi:10.1016/j.elstat.2008.06.002

7. Kovetz, A., Electromagnetic Theory, Oxford University Press, Oxford, 2000.

8. Sancho, M., J. L. Sebastián, and V. Giner, "Distribution of charges on conductors and Thomson's theorem," Eng. Sci. Educ. J., Vol. 10, 26-30, 2001.
doi:10.1049/esej:20010104

9. Donolato, C., "An application of Thomson's theorem to the determination of induced charge density," Eur. J. Phys., Vol. 24, L1-L4, 2003.
doi:10.1088/0143-0807/24/3/101

10. Brito, L. and M. Fiolhais, "Energetics of charge distributions," Eur. J. Phys., Vol. 23, 427-431, 2002.
doi:10.1088/0143-0807/23/4/306

11. Sancho, M., J. L. Sebastián, S. Muñoz, and J. M. Miranda, "Computational method in electrostatics based on monte carlo energy minimization," IEE Proc., Sci. Meas. Technol., Vol. 148, 121-124, 2009.
doi:10.1049/ip-smt:20010449

12. Karlsson, P. W., "Inductance inequalities for ideal conductors," Arch. f. Elektrotech., Vol. 67, 29-33, 1984.
doi:10.1007/BF01574728

13. Badía-Majós, A., "Understanding stable levitation of super-conductors from intermediate electromagnetics," Am. J. Phys., Vol. 74, 1136-1142, 2006.
doi:10.1119/1.2338548

14. McAllister, I. W., "Surface current density K: An introduction," IEEE Trans. Elect. Insul., Vol. 26, 416-417, 1991.
doi:10.1109/14.85112

15. Dolecek, R. L. and J. de Launay, "Conservation of flux by a superconducting torus," Phys. Rev., Vol. 78, 58-60, 1950.
doi:10.1103/PhysRev.78.58

16. Hehl, F. W. and Y. N. Obukhov, "Dimensions and units in electrodynamics," Gen. Relativ. Gravit., Vol. 37, 733-749, USA, 2005.
doi:10.1007/s10714-005-0059-2

17. Landau, L. D. and E. M. Lifshitz, The Classical Theory of Fields, 4 Ed., Pergamon, Oxford, 1975.

18. London, F. and H. London, "The electromagnetic equations of the supraconductor," Proc. Roy. Soc. A, Vol. 149, 71-88, 1935.
doi:10.1098/rspa.1935.0048

19. Badía-Majós, A., J. F. Cariñena, and C. López "Geometric treatment of electromagnetic phenomena in conducting materials: variational principles," J. Phys. A: Math. Gen., Vol. 39, 14699-14726, 2006.
doi:10.1088/0305-4470/39/47/013

20. Woltjer, L., "A theorem on force-free magnetic fields," Proc. Nat. Acad. Sci., Vol. 44, 489-491, 1958.
doi:10.1073/pnas.44.6.489

21. Griffiths, D. J., Introduction to Electrodynamics, 3 Ed., Prentice Hall, New Jersey, 1999.

22. Meissner, W. and R. Ochsenfeld, "Ein neuer Effekt bei eintritt der Supraleitfähigkeit," Naturwiss., Vol. 21, 787-788, 1933.
doi:10.1007/BF01504252

23. Hirsch, J. E., "Charge expulsion, spin Meissner effect, and charge inhomogeneity in superconductors," J. Supercond. Nov. Magn., Vol. 22, 131-139, 2009.
doi:10.1007/s10948-008-0381-5

24. Forrest, A. M., "Meissner and Ochsenfeld revisited," Eur. J. Phys., Vol. 4, 117-120, 1983, Comments on and translation into English of Meissner and Ochsenfeld.
doi:10.1088/0143-0807/4/2/011

25. Alfvén, H. and C.-G. Fälthammar, Cosmical Electrodynamics, 2 Ed., Oxford University Press, Oxford, 1963.

26. Essén, H, "From least action in electrodynamics to magnetomechanical energy," Eur. J. Phys., Vol. 30, 515-539, 2009.
doi:10.1088/0143-0807/30/3/009

27. Gorter, C. J. and H. Casimir, "On supraconductivity I," Physica, Vol. 1, 306-320, 1934.
doi:10.1016/S0031-8914(34)90037-9

28. Essén, H., "Magnetic fields, rotating atoms, and the origin of diamagnetism," Phys. Scr., Vol. 40, 761-767, 1989.
doi:10.1088/0031-8949/40/6/012

29. Essén, H., "Darwin magnetic interaction energy and its macroscopic consequences," Phys. Rev. E, Vol. 53, 5228-5239, 1996.
doi:10.1103/PhysRevE.53.5228

30. Essén, H., "Magnetic dynamics of simple collective modes in a two-sphere plasma model," Phys. of Plasmas, Vol. 12, 122101-1-7, 2005.

31. Essén, H., "Electrodynamic model connecting superconductor response to magnetic field and to rotation," Eur. J. Phys., Vol. 26, 279-285, 2005.
doi:10.1088/0143-0807/26/2/007

32. Greiner, W., Classical Electrodynamics, Springer, New York, 1998.
doi:10.1007/978-1-4612-0587-6

33. Fock, V., "Skineffekt in einem Ringe," Phys. Z. Sowjetunion, Vol. 1, 215-236, 1932.

34. De Launay, J., "Electrodynamics of a superconducting torus,", Technical Report NRL-3441, Naval Research Lab, Washington DC, 1949.

35. Carter, G. W., S. C. Loh, and C. Y. K. Po, "The magnetic field of systems of currents circulating in a conducting ring," Quart. Journ. Mech. and Applied Math., Vol. 18, 87-106, 1965.
doi:10.1093/qjmam/18.1.87

36. Bhadra, D., "Field due to current in toroidal geometry," Rev. Sci. Instrum., Vol. 39, 1536-1546, 1968.
doi:10.1063/1.1683157

37. Haas, H., "Das Magnetfeld eines gleichstromdurchflossenen Torus," Arch. f. Elektrotech., Vol. 58, 197-209, 1976.
doi:10.1007/BF01600116

38. Belevitch, V. and J. Boersma, "Some electrical problems for a torus," Philips J. Res., Vol. 38, 79-137, 1983.

39. Ivaska, V., V. Jonkus, and V. Palenskis, "Magnetic field distribution around a superconducting torus," Physica C, Vol. 319, 79-86, 1999.
doi:10.1016/S0921-4534(99)00279-8

40. Zhilichev, Y. N., "Superconducting cylinder in a static transverse magnetic field," IEEE Trans. Appl. Supercond., Vol. 7, 3874-3879, 1997.
doi:10.1109/77.659441

41. Matute, E. A., "On the superconducting sphere in an external magnetic field," Am. J. Phys., Vol. 67, 786-788, 1999.
doi:10.1119/1.19126