Vol. 109
Latest Volume
All Volumes
PIER 180 [2024] PIER 179 [2024] PIER 178 [2023] PIER 177 [2023] PIER 176 [2023] PIER 175 [2022] PIER 174 [2022] PIER 173 [2022] PIER 172 [2021] PIER 171 [2021] PIER 170 [2021] PIER 169 [2020] PIER 168 [2020] PIER 167 [2020] PIER 166 [2019] PIER 165 [2019] PIER 164 [2019] PIER 163 [2018] PIER 162 [2018] PIER 161 [2018] PIER 160 [2017] PIER 159 [2017] PIER 158 [2017] PIER 157 [2016] PIER 156 [2016] PIER 155 [2016] PIER 154 [2015] PIER 153 [2015] PIER 152 [2015] PIER 151 [2015] PIER 150 [2015] PIER 149 [2014] PIER 148 [2014] PIER 147 [2014] PIER 146 [2014] PIER 145 [2014] PIER 144 [2014] PIER 143 [2013] PIER 142 [2013] PIER 141 [2013] PIER 140 [2013] PIER 139 [2013] PIER 138 [2013] PIER 137 [2013] PIER 136 [2013] PIER 135 [2013] PIER 134 [2013] PIER 133 [2013] PIER 132 [2012] PIER 131 [2012] PIER 130 [2012] PIER 129 [2012] PIER 128 [2012] PIER 127 [2012] PIER 126 [2012] PIER 125 [2012] PIER 124 [2012] PIER 123 [2012] PIER 122 [2012] PIER 121 [2011] PIER 120 [2011] PIER 119 [2011] PIER 118 [2011] PIER 117 [2011] PIER 116 [2011] PIER 115 [2011] PIER 114 [2011] PIER 113 [2011] PIER 112 [2011] PIER 111 [2011] PIER 110 [2010] PIER 109 [2010] PIER 108 [2010] PIER 107 [2010] PIER 106 [2010] PIER 105 [2010] PIER 104 [2010] PIER 103 [2010] PIER 102 [2010] PIER 101 [2010] PIER 100 [2010] PIER 99 [2009] PIER 98 [2009] PIER 97 [2009] PIER 96 [2009] PIER 95 [2009] PIER 94 [2009] PIER 93 [2009] PIER 92 [2009] PIER 91 [2009] PIER 90 [2009] PIER 89 [2009] PIER 88 [2008] PIER 87 [2008] PIER 86 [2008] PIER 85 [2008] PIER 84 [2008] PIER 83 [2008] PIER 82 [2008] PIER 81 [2008] PIER 80 [2008] PIER 79 [2008] PIER 78 [2008] PIER 77 [2007] PIER 76 [2007] PIER 75 [2007] PIER 74 [2007] PIER 73 [2007] PIER 72 [2007] PIER 71 [2007] PIER 70 [2007] PIER 69 [2007] PIER 68 [2007] PIER 67 [2007] PIER 66 [2006] PIER 65 [2006] PIER 64 [2006] PIER 63 [2006] PIER 62 [2006] PIER 61 [2006] PIER 60 [2006] PIER 59 [2006] PIER 58 [2006] PIER 57 [2006] PIER 56 [2006] PIER 55 [2005] PIER 54 [2005] PIER 53 [2005] PIER 52 [2005] PIER 51 [2005] PIER 50 [2005] PIER 49 [2004] PIER 48 [2004] PIER 47 [2004] PIER 46 [2004] PIER 45 [2004] PIER 44 [2004] PIER 43 [2003] PIER 42 [2003] PIER 41 [2003] PIER 40 [2003] PIER 39 [2003] PIER 38 [2002] PIER 37 [2002] PIER 36 [2002] PIER 35 [2002] PIER 34 [2001] PIER 33 [2001] PIER 32 [2001] PIER 31 [2001] PIER 30 [2001] PIER 29 [2000] PIER 28 [2000] PIER 27 [2000] PIER 26 [2000] PIER 25 [2000] PIER 24 [1999] PIER 23 [1999] PIER 22 [1999] PIER 21 [1999] PIER 20 [1998] PIER 19 [1998] PIER 18 [1998] PIER 17 [1997] PIER 16 [1997] PIER 15 [1997] PIER 14 [1996] PIER 13 [1996] PIER 12 [1996] PIER 11 [1995] PIER 10 [1995] PIER 09 [1994] PIER 08 [1994] PIER 07 [1993] PIER 06 [1992] PIER 05 [1991] PIER 04 [1991] PIER 03 [1990] PIER 02 [1990] PIER 01 [1989]
2010-10-29
Hybrid Method of Higher-Order MoM and NystrÖm Disretization PO for 3D PEC Problems
By
Progress In Electromagnetics Research, Vol. 109, 381-398, 2010
Abstract
This paper presents an efficient and accurate hybrid approach of method of moments (MoM) and physical optics (PO) for radiation problems such as antennas mounted on a large platform. The new method employs higher-order hierarchical Legendre basis functions in the MoM region and higher-order Nyström scheme in the PO region. The two regions are both discretized with large domains. The unknowns can be much less than those in the small-domain MoM-PO solutions, which will lead to a great reduction in computation complexity. Furthermore, with the Nyström scheme in the PO region, the higher-order accuracy is maintained, and the calculation of the impedances can be more efficient than that in the existing higher-order MoM-PO procedure. Numerical results show the validity of the proposed method.
Citation
Ben Lai, Nan Wang, Hao-Bo Yuan, and Chang-Hong Liang, "Hybrid Method of Higher-Order MoM and NystrÖm Disretization PO for 3D PEC Problems," Progress In Electromagnetics Research, Vol. 109, 381-398, 2010.
doi:10.2528/PIER10081401
References

1. Harrington, R. F., Field Computation by Moment Methods, Wiley-IEEE, New York, 1993.
doi:10.1109/9780470544631

2. Bouche, D. P., F. A. Molinet, and R. Mittra, "Asymptotic and hybrid techniques for electromagnetic scattering," Proc. IEEE, Vol. 81, No. 12, 1658-1684, Dec. 1993.
doi:10.1109/5.248956

3. Kim, C. S. and Y. Rahmat-Samii, "Low profile antenna study using the physical optics hybrid method (POHM)," Proc. IEEE Int. Symp. Antennas Propagat. Soc. Meeting, London, Ont, Canada, Jun. 1991.

4. Hodges, R. E. and Y. Rahmat-Samii, "An iterative current-based hybrid method for complex structures," IEEE Trans. Antennas Propag., Vol. 45, No. 2, 265-276, Feb. 1997.
doi:10.1109/8.560345

5. Jakobus, U. and F. M. Landstorfer, "Improved PO-MM hybrid formulation for scattering from three-dimensional perfectly conducting bodies of arbitrary shape," IEEE Trans. Antennas Propag., Vol. 43, No. 2, 162-169, Feb. 1995.
doi:10.1109/8.366378

6. Jakobus, U. and F. M. Landstorfer, "Improvement of the PO-MM hybrid method by accounting for effects of perfectly conducting wedges," IEEE Trans. Antennas Propag., Vol. 43, No. 10, 1123-1129, Oct. 1995.
doi:10.1109/8.467649

7. Taboada, J. M., F. Obelleieo, and J. L. Rodríguez, "Improvement of the hybrid moment method-physical optics method through a novel ecaluation of physical optics operator," Microw. Opt. Technol. Lett., Vol. 30, No. 5, 357-363, Sep. 2001.
doi:10.1002/mop.1314

8. Rao, S. M., D. R. Wilton, and A. W. Glisson, "Electromagnetic scattering by surfaces of arbitrary shape," IEEE Trans. Antennas Propag., Vol. 30, No. 3, 409-418, May 1982.
doi:10.1109/TAP.1982.1142818

9. Djordjević, M. and B. M. Notaroš, "Double higher-order method of moments for surface integral equation modeling of metallic and dielectric antennas and structures," IEEE Trans. Antennas Propag., Vol. 52, No. 8, 2118-2129, Aug. 2004.
doi:10.1109/TAP.2004.833175

10. Jørgensen, E., J. L. Volakis, P. Meincke, and O. Breinbjerg, "Higher order hierarchical Legendre basis functions for electromagnetic modeling," IEEE Trans. Antennas Propag., Vol. 52, No. 11, 2985-2995, Nov. 2004.
doi:10.1109/TAP.2004.835279

11. Yuan, H. B., N. Wang, and C. H. Liang, "Fast algorithm to extract the singularity of higher order moment method," Journal of Electromagnetic Waves and Applications, Vol. 22, No. 8-9, 1250-1257, 2008.
doi:10.1163/156939308784158904

12. Ding, D.-Z., R.-S. Chen, and Z. Fan, "An efficient sai preconditioning technique for higher order hierarchical mlfmm implementation," Progress In Electromagnetics Research, Vol. 88, 255-273, 2008.
doi:10.2528/PIER08111501

13. Lai, B., X. An, H. B. Yuan, N. Wang, and C. H. Liang, "AIM analysis of 3D PEC problems using higher-order hierarchical basis functions," IEEE Trans. Antennas Propag., Vol. 58, No. 4, 1417-1421, Apr. 2010.
doi:10.1109/TAP.2010.2041153

14. Jørgensen, E., P. Meincke, and O. Breinbjerg, "A hybrid PO-higher-order hierarchical MoM formulation using curvilinear geometry modeling," IEEE Antennas and Propagation Soc. Int. Symp. Dig., Vol. 4, 98-101, Columbus, OH, Jun. 22-27, 2003.

15. Djordjević, M. and B. M. Notaroš, "Higher-order hybrid method of moments-physical optics modeling technique for radiation and scattering from large perfectly conducting surfaces," IEEE Trans. Antennas Propag., Vol. 53, No. 2, 800-813, Feb. 2005.
doi:10.1109/TAP.2004.841318

16. Zhang, Y., X. W. Zhao, M. Chen, and C. H. Liang, "An efficient MPI virtual topology based parallel, iterative MoM-PO hybrid method on PC cluster," Journal of Electromagnetic Waves and Applications, Vol. 20, No. 5, 661-676, 2006.
doi:10.1163/156939306776137782

17. Chen, M., X. W. Zhao, Y. Zhang, and C. H. Liang, "Analysis of antenna around nurbs surface with iterative MoM-PO technique," Journal of Electromagnetic Waves and Applications, Vol. 20, No. 12, 1667-1680, 2006.
doi:10.1163/156939306779292372

18. Chen, M., Y. Zhang, X. W. Zhao, and C. H. Liang, "Analysis of antenna around NURBS surface with hybrid MoM-PO technique," IEEE Trans. Antennas Propag., Vol. 55, No. 2, 407-413, Feb. 2007.
doi:10.1109/TAP.2006.889814

19. Liu, Z.-L. and J. Yang, "Analysis of electromagnetic scattering with higher-order moment method and nurbs model," Progress In Electromagnetics Research, Vol. 96, 83-100, 2009.
doi:10.2528/PIER09071704

20. Yuan, H. B., N. Wang, and C. H. Liang, "Combining the higher order method of moments with geometric modeling by nurbs surfaces," IEEE Trans. Antennas Propag., Vol. 57, No. 11, 3558-3563, Nov. 2009.
doi:10.1109/TAP.2009.2023095

21. Hu, B., X.-W. Xu, M. He, and Y. Zheng, "More accurate hybrid po-mom analysis for an electrically large antenna-radome structure," Progress In Electromagnetics Research, Vol. 92, 255-265, 2009.
doi:10.2528/PIER09022301

22. Canning, L. F., J. J. Ottusch, M. A. Stalzer, J. L. Visher, and S. M.Wandzura, "Numerical solution of the Helmholtz equation in 2D and 3D using a high-order NystrÄom discretizetion," J. Comput. Phys., Vol. 146, No. 2, 627-663, 1998.
doi:10.1006/jcph.1998.6077

23. Gedney, S. D., "Higher-order method of moments solution of the scattering by three-dimensional PEC bodies using Quadrature based point matching," Microw. Opt. Technol. Lett., Vol. 29, No. 5, 303-309, Jun. 2001.
doi:10.1002/mop.1162

24. Gedney, S. D., "On deriving a locally corrected Nyström scheme from a quadrature sampled moment method," IEEE Trans. Antennas Propag., Vol. 51, No. 9, 2402-2412, Sep. 2003.
doi:10.1109/TAP.2003.816305

25. Çalíşkan, F. and A. F. Peterson, "The need for mixed-order representations with the locally corrected Nyström method," IEEE Antennas and Wireless Propagat. Lett., Vol. 2, 72-73, 2003.

26. Duffy, M. G., "Quadrature over a pyramid or cube of integrands with a singularity at vertex," SIAM J. Numer. Anal., Vol. 19, No. 6, 1260-1262, Dec. 1982.
doi:10.1137/0719090

27. Ewe, W. B., L. W. Li, Q. Wu, and M. S. Leong, "Analysis of reflector and horn antennas using adaptive integral method," IEICE Trans. Commun., Vol. E88-B, No. 6, Jun. 2005.
doi:10.1093/ietcom/e88-b.6.2327