1. Harrington, R. F., Field Computation by Moment Methods, Wiley-IEEE, New York, 1993.
doi:10.1109/9780470544631
2. Bouche, D. P., F. A. Molinet, and R. Mittra, "Asymptotic and hybrid techniques for electromagnetic scattering," Proc. IEEE, Vol. 81, No. 12, 1658-1684, Dec. 1993.
doi:10.1109/5.248956
3. Kim, C. S. and Y. Rahmat-Samii, "Low profile antenna study using the physical optics hybrid method (POHM)," Proc. IEEE Int. Symp. Antennas Propagat. Soc. Meeting, London, Ont, Canada, Jun. 1991.
4. Hodges, R. E. and Y. Rahmat-Samii, "An iterative current-based hybrid method for complex structures," IEEE Trans. Antennas Propag., Vol. 45, No. 2, 265-276, Feb. 1997.
doi:10.1109/8.560345
5. Jakobus, U. and F. M. Landstorfer, "Improved PO-MM hybrid formulation for scattering from three-dimensional perfectly conducting bodies of arbitrary shape," IEEE Trans. Antennas Propag., Vol. 43, No. 2, 162-169, Feb. 1995.
doi:10.1109/8.366378
6. Jakobus, U. and F. M. Landstorfer, "Improvement of the PO-MM hybrid method by accounting for effects of perfectly conducting wedges," IEEE Trans. Antennas Propag., Vol. 43, No. 10, 1123-1129, Oct. 1995.
doi:10.1109/8.467649
7. Taboada, J. M., F. Obelleieo, and J. L. Rodríguez, "Improvement of the hybrid moment method-physical optics method through a novel ecaluation of physical optics operator," Microw. Opt. Technol. Lett., Vol. 30, No. 5, 357-363, Sep. 2001.
doi:10.1002/mop.1314
8. Rao, S. M., D. R. Wilton, and A. W. Glisson, "Electromagnetic scattering by surfaces of arbitrary shape," IEEE Trans. Antennas Propag., Vol. 30, No. 3, 409-418, May 1982.
doi:10.1109/TAP.1982.1142818
9. Djordjević, M. and B. M. Notaroš, "Double higher-order method of moments for surface integral equation modeling of metallic and dielectric antennas and structures," IEEE Trans. Antennas Propag., Vol. 52, No. 8, 2118-2129, Aug. 2004.
doi:10.1109/TAP.2004.833175
10. Jørgensen, E., J. L. Volakis, P. Meincke, and O. Breinbjerg, "Higher order hierarchical Legendre basis functions for electromagnetic modeling," IEEE Trans. Antennas Propag., Vol. 52, No. 11, 2985-2995, Nov. 2004.
doi:10.1109/TAP.2004.835279
11. Yuan, H. B., N. Wang, and C. H. Liang, "Fast algorithm to extract the singularity of higher order moment method," Journal of Electromagnetic Waves and Applications, Vol. 22, No. 8-9, 1250-1257, 2008.
doi:10.1163/156939308784158904
12. Ding, D.-Z., R.-S. Chen, and Z. Fan, "An efficient sai preconditioning technique for higher order hierarchical mlfmm implementation," Progress In Electromagnetics Research, Vol. 88, 255-273, 2008.
doi:10.2528/PIER08111501
13. Lai, B., X. An, H. B. Yuan, N. Wang, and C. H. Liang, "AIM analysis of 3D PEC problems using higher-order hierarchical basis functions," IEEE Trans. Antennas Propag., Vol. 58, No. 4, 1417-1421, Apr. 2010.
doi:10.1109/TAP.2010.2041153
14. Jørgensen, E., P. Meincke, and O. Breinbjerg, "A hybrid PO-higher-order hierarchical MoM formulation using curvilinear geometry modeling," IEEE Antennas and Propagation Soc. Int. Symp. Dig., Vol. 4, 98-101, Columbus, OH, Jun. 22-27, 2003.
15. Djordjević, M. and B. M. Notaroš, "Higher-order hybrid method of moments-physical optics modeling technique for radiation and scattering from large perfectly conducting surfaces," IEEE Trans. Antennas Propag., Vol. 53, No. 2, 800-813, Feb. 2005.
doi:10.1109/TAP.2004.841318
16. Zhang, Y., X. W. Zhao, M. Chen, and C. H. Liang, "An efficient MPI virtual topology based parallel, iterative MoM-PO hybrid method on PC cluster," Journal of Electromagnetic Waves and Applications, Vol. 20, No. 5, 661-676, 2006.
doi:10.1163/156939306776137782
17. Chen, M., X. W. Zhao, Y. Zhang, and C. H. Liang, "Analysis of antenna around nurbs surface with iterative MoM-PO technique," Journal of Electromagnetic Waves and Applications, Vol. 20, No. 12, 1667-1680, 2006.
doi:10.1163/156939306779292372
18. Chen, M., Y. Zhang, X. W. Zhao, and C. H. Liang, "Analysis of antenna around NURBS surface with hybrid MoM-PO technique," IEEE Trans. Antennas Propag., Vol. 55, No. 2, 407-413, Feb. 2007.
doi:10.1109/TAP.2006.889814
19. Liu, Z.-L. and J. Yang, "Analysis of electromagnetic scattering with higher-order moment method and nurbs model," Progress In Electromagnetics Research, Vol. 96, 83-100, 2009.
doi:10.2528/PIER09071704
20. Yuan, H. B., N. Wang, and C. H. Liang, "Combining the higher order method of moments with geometric modeling by nurbs surfaces," IEEE Trans. Antennas Propag., Vol. 57, No. 11, 3558-3563, Nov. 2009.
doi:10.1109/TAP.2009.2023095
21. Hu, B., X.-W. Xu, M. He, and Y. Zheng, "More accurate hybrid po-mom analysis for an electrically large antenna-radome structure," Progress In Electromagnetics Research, Vol. 92, 255-265, 2009.
doi:10.2528/PIER09022301
22. Canning, L. F., J. J. Ottusch, M. A. Stalzer, J. L. Visher, and S. M.Wandzura, "Numerical solution of the Helmholtz equation in 2D and 3D using a high-order NystrÄom discretizetion," J. Comput. Phys., Vol. 146, No. 2, 627-663, 1998.
doi:10.1006/jcph.1998.6077
23. Gedney, S. D., "Higher-order method of moments solution of the scattering by three-dimensional PEC bodies using Quadrature based point matching," Microw. Opt. Technol. Lett., Vol. 29, No. 5, 303-309, Jun. 2001.
doi:10.1002/mop.1162
24. Gedney, S. D., "On deriving a locally corrected Nyström scheme from a quadrature sampled moment method," IEEE Trans. Antennas Propag., Vol. 51, No. 9, 2402-2412, Sep. 2003.
doi:10.1109/TAP.2003.816305
25. Çalíşkan, F. and A. F. Peterson, "The need for mixed-order representations with the locally corrected Nyström method," IEEE Antennas and Wireless Propagat. Lett., Vol. 2, 72-73, 2003.
26. Duffy, M. G., "Quadrature over a pyramid or cube of integrands with a singularity at vertex," SIAM J. Numer. Anal., Vol. 19, No. 6, 1260-1262, Dec. 1982.
doi:10.1137/0719090
27. Ewe, W. B., L. W. Li, Q. Wu, and M. S. Leong, "Analysis of reflector and horn antennas using adaptive integral method," IEICE Trans. Commun., Vol. E88-B, No. 6, Jun. 2005.
doi:10.1093/ietcom/e88-b.6.2327