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Abstract—This paper presents an efficient and accurate hybrid
approach of method of moments (MoM) and physical optics (PO) for
radiation problems such as antennas mounted on a large platform.
The new method employs higher-order hierarchical Legendre basis
functions in the MoM region and higher-order Nyström scheme in the
PO region. The two regions are both discretized with large domains.
The unknowns can be much less than those in the small-domain MoM-
PO solutions, which will lead to a great reduction in computation
complexity. Furthermore, with the Nyström scheme in the PO region,
the higher-order accuracy is maintained, and the calculation of the
impedances can be more efficient than that in the existing higher-
order MoM-PO procedure. Numerical results show the validity of the
proposed method.

1. INTRODUCTION

The method of moments (MoM) [1] has been widely used to solve
electromagnetic scattering and radiation problems. However, the
computational complexity and memory storage of the conventional
MoM which leads to a dense system of linear equations are both O(N2),
where N is the number of unknowns. Therefore, the traditional MoM
is limited to electrically small problems. To efficiently analyze the
large problems in terms of wavelength, hybridization of the MoM with
asymptotic techniques [2], such as physical optics (PO) or ray-based
geometrical theory of diffraction (GTD) method, has been proposed
in the past years. The asymptotic techniques used in large smooth
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part of the structure can greatly reduce the computation and storage
complexity. Meanwhile, the MoM used in the other parts can keep
the accuracy. Accordingly, the hybrid methods have been applied to a
wide class of large-scale practical electromagnetic problems.

The current-based technique MoM-PO is an approximation of the
hybrid electric field integral equation (EFIE)-magnetic field integral
equation (MFIE) formulation. It was firstly applied to 3D structures
in [3]. Then, similar MoM-PO approaches can be seen in [4]. The
further improvements were presented in [5–7]. These methods all
used lower-order current approximation [13], in which the model is
discretized with small elements. The average size of the elements
is limited to λ/10, where λ is the wavelength. This will result in
a large number of unknowns and then the great requirements of
the computation and storage resources. More recently, the higher-
order basis functions [9–11] are introduced to the MoM to greatly
reduce the number of unknowns, and they are also applied to
fast algorithms [12, 13]. The higher-order MoM-PO methods were
proposed in [14, 15], in which the number of unknowns has been
dramatically reduced by employing the higher-order basis functions
which are defined on the relatively large elements. In [15], hierarchical
polynomial basis functions based Galerkin technique was used in
MoM region, and the modified Chebyshev polynomial basis functions
based point-matching technique was used in PO region. However,
the computation costs can still be large since each impedance matrix
element is obtained by a parametric coordinate based numerical
integral. In [16], the MoM-PO procedure is accelerated by the PC
cluster. In [17] and [18], the Non-Uniform Rational B-Spline technique
(NURBs) technique is introduced to improve the geometry modeling
in PO region. In [19, 20], the NURBs technique is also introduced to
MoM. The MoM-PO method are also employed to analyze the antenna-
radome structure efficiently [21].

The Nyström method is a point-based discretization scheme
with approximating the conventional integral through a certain
quadrature rule. By employing the locally corrected scheme, the locally
corrected Nyström (LCN) method has been used for integral equation
methods [22–25]. This scheme can be derived from higher-order MoM
solution where both the basis and the testing functions are expanded as
a set of smooth functions. Therefore, it can provide the same accuracy
as the higher-order basis functions based Galerkin scheme.

This paper presents an efficient higher-order MoM-PO technique
to analyze the 3D PEC problems. The higher-order hierarchical
Legendre basis functions based Galerkin technique is employed in the
MoM region. The Nyström scheme is firstly employed in the PO region.
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Figure 1. Perfectly conductor decomposed into regions SMoM and
SPO.

Like the existing higher-order hybrid methods, the entire model is
discretized with electrically large generalized curvilinear quadrilaterals,
and the high-order accuracy is kept. However, the new method is more
convenient in implementation. Firstly, the PO-PO matrix can be made
into an identity matrix more easily. Then, the interactions between the
MoM and the PO regions can be calculated more efficiently. Therefore,
the computation costs are much less than that in the existing Higher-
order MoM-PO scheme.

2. HYBRID MOM-PO PROCEDURE

Consider the problem of radiation and scattering from an arbitrary
3D PEC structure. Using the Schelkunoff’s equivalent principle, the
conductor can be replaced by the equivalent currents which radiate
in the free space. To apply the MoM-PO scheme, we decompose the
problem into two regions shown in Fig. 1: The MoM region SMoM,
including antennas and near regions, geometrical discontinuities,
electrically small structures, etc., and the PO region SPO, including
the remaining surfaces.

Applying the boundary conditions to the tangential components
of the electric and magnetic fields, we can get a pair of coupled integral
equations ([4] and [15])

n× [E(JMoM) + E(JPO) + Ei] = 0 (1)

in the MoM region, and

JMoM + JPO = 2n× [H(JMoM) + H(JPO) + Hi] (2)

in the PO region, where n is the unit normal vector on the surfaces, Ei

and Hi represent the incident fields. JMoM on the left side of (2) only
exist in the domain where the MoM region and the PO region overlap.
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E(J) and H(J) are the scattering fields due to the current J and are
expressed as

E(J) = −jωµ

∫

S

JGds− j

ωε
∇

∫

S

∇G · Jds (3)

and
H(J) = ∇×

∫

S

JGds (4)

with G = e−jkR

4πR being the Green’s function, where R is the distance
of the field point from the source point and k is the free-space
wavenumber. For the PO application, (2) is approximated as

JMoM + JPO =
{

2n× [H(JMoM) + Hi], r ∈ Slit

0, r ∈ Sshad
(5)

where Slit (Sshad) denote the lit (shadowed) regions as determined by
geometrical optics (GO).

Then, by employing the basis and testing functions in both of the
two regions, (1) and (6) can be rewritten as matrix equations

[
ZMoM

MoM ZMoM
PO

ZPO
MoM ZPO

PO

]
·
[
IMoM

IPO

]
=

[
V MoM

V PO

]
. (6)

After simple substitutions, the currents in the two regions can be solved
separately by

[
ZMoM

MoM − ZMoM
PO

(
PPO

PO

)−1
ZPO

MoM

]
IMoM

= V MoM − ZMoM
PO

(
PPO

PO

)−1
V PO (7)

and
IPO = (PPO

PO )−1[V PO − ZPO
MoMIMoM]. (8)

In the higher-order MoM-PO procedure here, both SMoM and SPO

are discretized with curvilinear cells with local coordinate system (u, v).
Then, the currents on each domain can be expressed as

fn(r) = fu(u, v)au + fv(u, v)av (9)

where the co-variant vectors au and av are expressed as au = ∂r/∂u
and av = ∂r/∂v.

The specific representations of the impedance matrix elements are
determined by the choices of the basis and the testing functions and
will be described in the following sections. Without loss of generality,
we only consider the u-direction components of these functions.
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3. HIGHER-ORDER BASIS FUNCTIONS IN THE MOM
REGION

In the MoM region, currents are expanded as the higher-order
hierarchical Legendre basis functions

fu(u, v) =
1

J(u, v)

Mu∑

i=0

Mv∑

j=0

Iu
ijP̃i(u)Pj(v) (10)

where J(u, v) = |au × av| is the surface Jacobian, Iu
ij is unknown

coefficient, Mu and Mv are expansion orders along parametric
directions, Pj(v) are Legendre polynomials, and P̃i(u) are the modified
Legendre polynomial [10]. We consider the basis functions in the
following simplified form:

bu
ij(u, v) =

Γij(u, v)
J(u, v)

au (11)

where
Γij(u, v) = P̃i(u)Pj(v). (12)

By employing the Galerkin scheme for (1) and applying the surface
divergence theorem, the impedances corresponding to the testing
function defined by indices im and jm on the mth quadrilateral and
the basis function defined by indices in and jn on the nth quadrilateral
are obtained by

zMoM
MoM = −jωµ

∫

sm

∫

sn

timjm · binjnGdsmdsn

+
j

ωε

∫

sm

∫

sn

∇ · timjm∇′ · binjnGdsmdsn (13)

where timjm denotes the testing function. By transforming the physical
space coordinates to the local curvilinear coordinates, we can get

zMoM
MoM=−jωµ

u2m∫

u1m

v2m∫

v1m

u2n∫

u1n

v2n∫

v1n

(Γim,jmaum)·(Γin,jnaun)×Gdumdvmdundvn

+
j

ωε

u2m∫

u1m

v2m∫

v1m

u2n∫

u1n

v2n∫

v1n

∂Γim,jm

∂um

∂Γin,jn

∂un
×Gdumdvmdundvn (14)

where the integration limits in both quadrilaterals are u1 = v1 = −1
and u2 = v2 = 1. When m = n, the Duffy transform [26] is employed
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to deal with the singularities. The excitation elements in the MoM
region can be expressed as

vMoM = −
u2m∫

u1m

v2m∫

v1m

Γim,jmaum ·Eidumdvm. (15)

4. NYSTRÖM SCHEME IN THE PO REGION

4.1. The Nyström Scheme

The mechanism of the Nyström method is replacing the numerical
integral with a summation through an appropriate quadrature rule.
For example, an integral equation with the linear kernel K(r, r′) is
expressed as follows

φ(r) =
∫

S′

K(r, r′)f(r′)dS′. (16)

By employing the Gauss-Legendre rule of 2D parametric surface, (16)
can be rewritten as

φ(r) =
P u∑

i=1

P v∑

j=1

wijJijK(r, rij)f(ui, vj) (17)

where P u (P v) are the number of integral points in u (v) direction, wij

is the integral weight and Jij is the surface Jacobian. Sampling φ(r)
at the integral points will lead to a linear system of equations to solve
the unknown coefficients at these points.

However, if the kernel is singular when the source and observation
points are on the same quadrilateral, we should employ the locally
corrected scheme and rewrite (17) as

φ(r) =
P u∑

i=1

P v∑

j=1

w̃ijf(ui, vj) (18)

where w̃ij are the weights of the specialized local quadrature rule for
singularity at r, and can be explained as the effect of f(ui, vj) at r
through the kernel K(r, rij). By introducing a set of regular functions
Fs(r) (s = 1, P uP v) distributed on the quadrilateral, we can get w̃ij

by solving the linear system of equations composed of
P u∑

i=1

P v∑

j=1

w̃ijFs(rij) =
∫

S′

K(r, r′)Fs(r′)dS′. (19)
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Figure 2. Basis functions distribution on a quadrilateral surface in
the PO region.

Thus, the singularities in applying the Nyström scheme have been
converted to the singularities of the integrations on the right side
of (19). The procedures of dealing these singularities for both the EFIE
and the MFIE kernels have been given in [22–24] in detail. Note that
the interactions of the points on the two conjoint domains should also
be obtained by this locally corrected scheme to maintain the continuity
of the currents.

4.2. The Basis and Testing Functions in the PO Region

In the PO region, since there are no singularities in the PO equation,
the currents can be simply solved by Nyström scheme with expanding
the currents as a set of the Dirac delta functions defined at the integral
points as shown in Fig. 2

fu(u, v) =
P u∑

i=1

P v∑

j=1

Iu
ijwijJ(ui, vj)δ(u− ui, v − vj) (20)

where Iu
ij is unknown coefficient, wij is the integral weight, J(ui, vj) is

the surface Jacobian and δ is the Dirac delta function. Similarly, we
consider the basis functions in the following simplified form:

bu
ij(u, v) = auwijJ(ui, vj)δ(u− ui, v − vj). (21)

In dealing with electric field integral equation (EFIE) by the
locally corrected procedure mentioned in [22–24], testing functions are
as the same as the basis functions. Here in dealing with PO equation,
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Figure 3. Surface co-variant vectors and the vector of testing function
corresponding to the u-direction.

to make PPO
PO an identity matrix, a proper modification should be made

to satisfy

pPO
PO =

1
2

∫

Sm

tPO
m · bPO

n dsm = δmn =
{

1, m = n
0, m 6= n

. (22)

So we introduce the testing functions as

tu
ij(u, v) =

2a′v
|au · a′u|

δ(u− ui, v − vi)
wijJ(ui, vj)

(23)

where
a′u = av × (au × av) (24)

as shown in Fig. 3. Evidently, (22) can be simply satisfied.

4.3. The Elements of the MoM-PO Matrix Equation

Using the basis and testing functions described above, we can present
the impedance matrix elements of MoM-PO. The projection matrix in
the PO region is an identity matrix and expressed as

pPO
PO = δ(uim − uin , vjm − vjn). (25)

The excitation elements in the PO region can be expressed as

vPO =
2a′um

· [n×Hi(uim , vjm)]
|aum · a′um

|wimjmJ(uim , vjm)
. (26)
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From (1) and (3), the elements of ZMoM
PO are obtained by

zMoM
PO = −jωµ

u2m∫

u1m

v2m∫

v1m

(Γim,jmaum) · (winjnJinjnaun) ·Gdumdvm

− j

ωε

u2m∫

u1m

v2m∫

v1m

(Γim,jmaum) ·∇(∇G ·(winjnJinjnaun))dumdvm (27)

From (4) and (5), the elements of ZMoM
PO are obtained by

zPO
MoM =

Γin,jn(aun · a′um
)

|aum · a′um
|wimjmJ(uim , vjm)J(uin , vjn)

− 2(a′um
× n)

|aum · a′um
|wimjmJ(uim , vjm)

u2n∫

u1n

v2n∫

v1n

∇G

×(Γin,jnaun)dundvn, rn ∈ Slit (28)
If the MoM and PO regions overlap, the integral kernels of (27)

and (28) are singular. In (28), the integrand has a singularity of
O(1/R) [24] and can be computed by the Duffy transform. For the
integrand in (27), the locally corrected scheme which is a little different
from that in [24] should be employed on each overlapped patch. Firstly,
we consider (3) and rewrite the kernel as

K(rm, rn) = aum · (−jωµ ¯̄I − j

ωε
∇∇)G · aun . (29)

Then, elements with singularities can be obtained by

zsig(imjm, injn) =
∫

Sm

∫

Sn

timjmK(r, r′)binjndsmdsn

=
∫

Sm

timjmK(rm, rn)winjnJ(rn)dsm

= w̃imjm

injn
(30)

where timjm is the higher-order basis function in the MoM region, binjn

is the Dirac delta basis function in the PO region and J(r) is the
surface Jacobian at r. To obtain the specialized quadrature weights
w̃imjm

injn
, we introduce a set of regular functions Fij(r) defined in the PO

region and construct the linear system of equations∑

ij

Fij(rn)w̃imjm

injn
= φij (31)
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with the right side part expressed as

φij =
∑

injn

∫

Sm

timjm(rm)K(rm, rn)winjnJ(rn)Fij(rn)dsm

=
∫

Sm

∫

Sn

timjm(rm)K(rm, rn)Fij(rn)dsmdsn (32)

By taking Tm = timjm(rm)aum and Bn = Fij(rn)aun , and after simple
transformations, we can get

φij = −jωµ

∫

Sm

∫

Sn

Tm ·BnGdsmdsn

+
j

ωε

∫

Sm

∫

Sn

∇ ·Tm∇′ ·BnGdsmdsn

+
j

ωε

∫

Lm

∫

Ln

(Tm · n̂lm)(Bn · n̂ln)Gdlmdln

− j

ωε

∫

Sm

∫

Ln

∇ ·Tm(Bn · n̂ln)Gdsmdln

− j

ωε

∫

Lm

∫

Sn

(Tm · n̂lm)∇′ ·BnGdlmdsn (33)

where Cm (Cn) are the contour bounding sm (sn), and em (en) are
the outward normal to Cm (Cn). Apparently, the integrations are all
of O(1/R) singularity and can be efficiently computed by the Duffy
transform. Here Fij(r) are chosen the same as the basis functions
for the MoM region with only the lower-order basis functions have
values on the contour boundary. Note that the line integral didn’t
exist in (13), that’s because each lower-order basis function that spans
two domains is taken account as a whole in transforming (3) to (13)
and the value of these basis functions on the contour boundary of the
entire two domains is zero.

4.4. Advantages of Nyström Discretization in the PO Region

The Nyström scheme can be employed in the PO region to efficiently
and accurately calculate the interactions between the currents of the
MoM and the PO regions which are the most costly part in the
whole procedure. Taking zMoM

PO as an example, we should consider
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the scattered electric field at a point in the MoM region due to the
currents in the PO region:

E(r) =
∫

S′

Ḡ(r, r′) · JPO(r′)ds′ (34)

where Ḡ(r, r′) is the well-known free-space dyadic Green’s function,
JPO(r′) is the current in the PO region, and r and r′ are the points in
the MoM and PO regions, respectively. The computation for filling
ZMoM

PO equals to the summation of computations for (34) at each
integral point r of the testing function in the MoM region.

If polynomial basis functions are employed in the PO region, after
introducing the numerical integral, (34) is rewritten as

E(r) =
NPO∑

n

NF∑

i

Np∑
p

wpJpḠ(r, r′p) · fPO
i (r′p) (35)

where rp is the pth integral point in the nth PO domain, wp is the
integral weight for parametric surface at rp, Jp is the Jacobian of the
parametric transformation, and fPO

i (r′ is the ith basis function on the
nth PO domain.

If the Nyström discretization is employed in the PO region, (34)
can be written efficiently as

E(r) =
NPO∑

n

Np∑
p

wpJpḠ(r, r′p). (36)

Since the basis and testing functions are defined exactly at these
integral points, (36) can ensure a great integration accuracy of (34). It
has been proved in [24] that the Nyström scheme equals to the higher-
order Galerkin scheme in accuracy.

Obviously, under the same accuracy demand of the integral in (34),
the computation costs of the new method is NF times less than
those for the existing higher-order MoM-PO method where higher-
order basis functions are defined in the PO region. When the PO
surface is discritized with average one lambda patches, 2× 7× 7 Dirac
delta functions defined at the integral points are needed at least for
Nyström discretization on each patch [24], while 2× 5× 4 polynomial
basis functions are need at least for higher-order basis functions on
each patch [8]. Thus, at this time, the new technique can provide
20 times more computation efficiency. If RWG-like lower-order basis
functions are employed, average 300 basis functions should be defined
on each one lambda patch. Even only one integral point is used in each
triangular patch, the computation costs will be much larger than that
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Figure 4. Structure of a dipole near a square plate.
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Figure 5. Radiation pattern of the dipole and plate structure in Fig. 4.
(a) The plane parallel to a pair of plate edge. (b) The plane containing
a plate diagonal.

for Nyström discretization PO method. Although the computation for
locally corrected procedure is costly, the overlapped region is small and
the whole method is still very efficient.

5. NUMERICAL RESULTS

In this section, three realistic examples are proposed to show the
validity of the new method, and all calculations are performed with
the double precision arithmetic. The computer used is with Pentium
2.0GHz CPU and 512MB ram.

As the first example, we consider a λ/2 dipole placed on the top
of a metallic square plate with 10λ on a side as shown in Fig. 4. The
distance from the center of the plate and the antenna is 1.25λ. The
wire is with diameter λ/1000 and is modeled using two segments with
second-order current approximation (Mu = 2). The plate is discretized
with 100 square patches each with λ on a side. The structure is
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analyzed using the pure MoM and two hybrid MoM-PO schemes. In
the first MoM-PO scheme, the antenna is considered as the MoM
region, and the whole plate is considered as the PO region. On each
patch, there are 49 discretized points with 7 points in each parametric
direction. In the second MoM-PO scheme, we introduce an additional
rim of MoM surface elements along the plate edges to improve the
accuracy of the hybrid solution. The rim is the shadow region shown
in Fig. 5, and a fourth-order current approximation is introduced on
it. The normalized radiation patterns in two characteristic planes
are calculated with the pure MoM and the two MoM-PO schemes.
As shown in Fig. 5, both the two hybrid solutions agree excellent
with the MoM solution for angles between 60◦ and 90◦. For other
angles, the results obtained by the second hybrid scheme can be better
than those by the first one, and the differences between these results
and the results obtained by the pure MoM are acceptable. The
antenna impedance computed by the first and second MoM-PO are
(78.37, 39.57)Ω and (78.42, 39.61) Ω, respectively, which agree very well
with the pure MoM results (79.05, 40.13) Ω.

In the first MoM-PO scheme, the number of unknowns in the
MoM region is only 3, and the main computational cost is the filling
of the impedance matrices in (8) which costs 3.6 s. With the technique
provided in [15], a fourth-order current approximation is introduced in
the PO region, the filling time will increase to 28 s. The second MoM-
PO scheme requires 1008 MoM unknowns, and the filling time is 713 s.
If current approximation in [15] is used, the filling time will increase to
be more than one hour. For the second MoM-PO scheme, the memory
cost is only 16 MB which is much less than that for the pure MoM
procedure. If the plate is considered by pure MoM, 29 800 RWG basis
functions are need which will lead to more than 14 GB memory cost.
In this paper, the MoM results are obtained by higher-order MoM [10]
in which the number of unknowns is 3120 and the memory cost is
156MB. The matrix filling time is 2471 s which is quite larger than
that for MoM-PO procedure.

Figure 6. Geometry of a parabolic reflect antennas fed by a dipole
backed by a circular dish.
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Figure 7. Radiation pattern of the parabolic reflect antennas fed by
a dipole backed by a circular dish. (a) E-plane. (b) H-plane.

The second example deals with a 1.55 GHz parabolic reflector
antenna fed by a circular-dish backed dipole [27] as shown in Fig. 6.
The reflector is with diameter 1.25 m and focal length 0.419 m, and it
is modeled with 304 average side length 0.4λ patches. A 0.2λ dipole is
located at the focal point of the reflector. The disk with 5.35 cm radius
is 5.74 cm apart at the back of the dipole. The disk and dipole are
modeled with 30 average side length 0.02m flat quadrilaterals. With
the MoM-PO procedure, the disk and dipole are considered as the MoM
region with the number of unknowns 150, and the reflector is considered
as the PO region with 4 discretized points in each parametric direction.
As shown in Fig. 7, for angles between −90◦ and 90◦, the results
obtained by the hybrid MoM-PO method agree quite well with those
obtained by the pure higher-order basis functions based MoM. The
filling time of the MoM-PO impedance matrix is 38 s. If a third-order
current approximation is used in the PO region [15], the filling time
will increase to be 150 s. Fig. 7 also shows the results for a MoM-PO
arrangement with a rim in the form of a single layer of MoM patches
introduced along the reflector edge. Thus the number of the MoM
unknowns is 451, and the filling time is 90 s. By this arrangement, we
can get better results for angles larger than 90◦. If the polynomial basis
functions in [15] are introduced, the filling time will increase to 310 s.
The antenna impedances computed by the first and second MoM-PO
are (11.0762,−578.81)Ω and (11.0893,−579.05)Ω, respectively, which
agree very well with the pure MoM results (11.1541,−582.29)Ω. In the
pure MoM procedure, 2557 higher-order basis functions are employed
and the memory cost is 105 MB. However, the memory cost for the
MoM-PO procedure is less than 3.3 MB. The matrix filling time for
pure MoM is 1392 s which is also quite larger than that for MoM-PO
procedure.
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Figure 8. Geometry of (a) the line array and a backed plate and (b)
the array mounted on the top of airplane.
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Figure 9. Radiation pattern of a line array mounted on an airplane.
(a) xoz-plane. (b) yoz-plane.

At last, we consider a 1 × 10 line array working at 150 MHz
mounted on the top of an airplane as shown in Fig. 8. The array
consists of ten 0.5λ dipoles and is backed with a 0.7λ×2.4λ plate. The
space distance of two adjacent dipole is 0.2λ. The plate is 0.25λ at
the back of array and 1.25λ apart from the airplane. Each dipole is
modeled with two segments and the plate is model by 12 plate patches.
The plane which is 70.7 meters long and 61.93 meters wide is modeled
by 4959 patches with average side length 0.4λ. In the MoM-PO scheme,
the array and the plate are considered as the MoM region which leads to
110 unknowns and for each patch of the airplane there are 4 discretized
points in each parametric direction. Note that the shadow condition (6)
is enforced for each domain in the MoM region. As shown in Fig. 9, the
results are compared with those obtained by the higher-order adaptive
integral method (AIM) [13]. For angles between −90◦ and 90◦, the
two results agree quit well. In the back region, however, the MoM-
PO prediction is not accurate enough. This discrepancy is due to the
fact that the currents over the shadowed region are week compared to
currents in the lit region but contribute significantly to the radiation
in the back region of the antenna system. The total computation
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time is 510 s with filling time 273 s. The memory cost of MoM-PO
procedure is less than 1 MB. Even with higher-order basis, the number
of unknowns for pure MoM is still 40011. Although, it can be solved
by the AIM, the memory cost is 227MB and the computation time
is nearly 2 hours even with no consideration of the iterative matrix
equation solving time.

6. CONCLUSION

In this paper, an efficient higher-order, large domain hybrid MoM-PO
procedure has been presented to analyze 3D PEC problems. In the
MoM region, higher-order hierarchical Legendre basis functions are
introduced to reduce the number of unknowns. In the PO region, a
simple Nyström scheme is employed with the currents expanded as a
set of Dirac delta functions at the numerical quadrature points. With
the new method, the computational costs can be much less than those
with the existing higher-order MoM-PO methods.
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