Vol. 109
Latest Volume
All Volumes
PIER 180 [2024] PIER 179 [2024] PIER 178 [2023] PIER 177 [2023] PIER 176 [2023] PIER 175 [2022] PIER 174 [2022] PIER 173 [2022] PIER 172 [2021] PIER 171 [2021] PIER 170 [2021] PIER 169 [2020] PIER 168 [2020] PIER 167 [2020] PIER 166 [2019] PIER 165 [2019] PIER 164 [2019] PIER 163 [2018] PIER 162 [2018] PIER 161 [2018] PIER 160 [2017] PIER 159 [2017] PIER 158 [2017] PIER 157 [2016] PIER 156 [2016] PIER 155 [2016] PIER 154 [2015] PIER 153 [2015] PIER 152 [2015] PIER 151 [2015] PIER 150 [2015] PIER 149 [2014] PIER 148 [2014] PIER 147 [2014] PIER 146 [2014] PIER 145 [2014] PIER 144 [2014] PIER 143 [2013] PIER 142 [2013] PIER 141 [2013] PIER 140 [2013] PIER 139 [2013] PIER 138 [2013] PIER 137 [2013] PIER 136 [2013] PIER 135 [2013] PIER 134 [2013] PIER 133 [2013] PIER 132 [2012] PIER 131 [2012] PIER 130 [2012] PIER 129 [2012] PIER 128 [2012] PIER 127 [2012] PIER 126 [2012] PIER 125 [2012] PIER 124 [2012] PIER 123 [2012] PIER 122 [2012] PIER 121 [2011] PIER 120 [2011] PIER 119 [2011] PIER 118 [2011] PIER 117 [2011] PIER 116 [2011] PIER 115 [2011] PIER 114 [2011] PIER 113 [2011] PIER 112 [2011] PIER 111 [2011] PIER 110 [2010] PIER 109 [2010] PIER 108 [2010] PIER 107 [2010] PIER 106 [2010] PIER 105 [2010] PIER 104 [2010] PIER 103 [2010] PIER 102 [2010] PIER 101 [2010] PIER 100 [2010] PIER 99 [2009] PIER 98 [2009] PIER 97 [2009] PIER 96 [2009] PIER 95 [2009] PIER 94 [2009] PIER 93 [2009] PIER 92 [2009] PIER 91 [2009] PIER 90 [2009] PIER 89 [2009] PIER 88 [2008] PIER 87 [2008] PIER 86 [2008] PIER 85 [2008] PIER 84 [2008] PIER 83 [2008] PIER 82 [2008] PIER 81 [2008] PIER 80 [2008] PIER 79 [2008] PIER 78 [2008] PIER 77 [2007] PIER 76 [2007] PIER 75 [2007] PIER 74 [2007] PIER 73 [2007] PIER 72 [2007] PIER 71 [2007] PIER 70 [2007] PIER 69 [2007] PIER 68 [2007] PIER 67 [2007] PIER 66 [2006] PIER 65 [2006] PIER 64 [2006] PIER 63 [2006] PIER 62 [2006] PIER 61 [2006] PIER 60 [2006] PIER 59 [2006] PIER 58 [2006] PIER 57 [2006] PIER 56 [2006] PIER 55 [2005] PIER 54 [2005] PIER 53 [2005] PIER 52 [2005] PIER 51 [2005] PIER 50 [2005] PIER 49 [2004] PIER 48 [2004] PIER 47 [2004] PIER 46 [2004] PIER 45 [2004] PIER 44 [2004] PIER 43 [2003] PIER 42 [2003] PIER 41 [2003] PIER 40 [2003] PIER 39 [2003] PIER 38 [2002] PIER 37 [2002] PIER 36 [2002] PIER 35 [2002] PIER 34 [2001] PIER 33 [2001] PIER 32 [2001] PIER 31 [2001] PIER 30 [2001] PIER 29 [2000] PIER 28 [2000] PIER 27 [2000] PIER 26 [2000] PIER 25 [2000] PIER 24 [1999] PIER 23 [1999] PIER 22 [1999] PIER 21 [1999] PIER 20 [1998] PIER 19 [1998] PIER 18 [1998] PIER 17 [1997] PIER 16 [1997] PIER 15 [1997] PIER 14 [1996] PIER 13 [1996] PIER 12 [1996] PIER 11 [1995] PIER 10 [1995] PIER 09 [1994] PIER 08 [1994] PIER 07 [1993] PIER 06 [1992] PIER 05 [1991] PIER 04 [1991] PIER 03 [1990] PIER 02 [1990] PIER 01 [1989]
2010-10-13
Sparse Reconstruction for SAR Imaging Based on Compressed Sensing
By
Progress In Electromagnetics Research, Vol. 109, 63-81, 2010
Abstract
Synthetic Aperture Radar (SAR) can obtain a two-dimensional image of the observed scene. However, the resolution of conventional SAR imaging algorithm based on Matched Filter (MF) theory is limited by the transmitted signal bandwidth and the antenna length. Compressed sensing (CS) is a new approach of sparse signals recovered beyond the Nyquist sampling constraints. In this paper, a high resolution imaging method is presented for SAR sparse targets reconstruction based on CS theory. It shows that the image of sparse targets can be reconstructed by solving a convex optimization problem based on L1 norm minimization with only a small number of SAR echo samples. This indicates the sample size of SAR echo can be considerably reduced by CS method. Super-resolution property and point-localization ability are demonstrated using simulated data. Numerical results show the presented CS method outperforms the conventional SAR algorithm based on MF even though small sample size of SAR echo is used in this method.
Citation
Shun-Jun Wei, Xiao-Ling Zhang, Jun Shi, and Gao Xiang, "Sparse Reconstruction for SAR Imaging Based on Compressed Sensing," Progress In Electromagnetics Research, Vol. 109, 63-81, 2010.
doi:10.2528/PIER10080805
References

1. Soumekh, M., Synthetic Aperture Radar Signal Processing with Matlab Algorithms, Wiley, New York, NY, 1999.

2. Curlander, J. C. and R. N. McDonough, Synthetic Aperture Radar: Systems and Signal Processing, John Wiley and Sons, 1991.

3. Cumming, I. G. and F. H. Wong, Digital Processing of Syethetic Aperture Radar Data: Algorithm and Implementatoin, Artech House Publishers, 2005.

4. Chan, Y. K. and V. C. Koo, "An introduction to synthetic aperture radar (SAR)," Progress In Electromagnetics Research B, Vol. 2, 27-60, 2008.

5. Moreira, A., J. Mittermayer, and R. Scheiber, "Extended chirp scaling algorithm for air- and spaceborne SAR data processing in stripmap and ScanSAR imaging modes," IEEE Transactions on Geoscience and Remote Sensing, Vol. 34, No. 5, 1123-1136, Sep. 1996.

6. Fang, L., X. Wang, and Y. Wang, "A modified SPECAN algo-rithm for synthetic aperture radar imaging," International Conference on Measuring Technology and Mechatronics Automation, Changsha, China, Mar. 2010.

7. Donoho, D., "Compressed sensing," IEEE Trans. Inf. Theory, Vol. 52, No. 4, 1289-1306, Apr. 2006.

8. Baraniuk, R., "Compressive sensing," IEEE Signal Processing, Vol. 24, No. 4, 118-121, Jul. 2007.

9. Candes, E. J. and M. Wakin, "An introduction to compressive sampling," IEEE Signal Processing Magazine, 21-30, Mar. 2008.

10. Romberg, J., "Imaging via compressive sampling," IEEE Signal Processing, Vol. 25, No. 2, 14-20, Mar. 2008.

11. Bruckstein, A. M., D. L. Donoho, and M. Elad, "From sparse solutions of systems of equations to sparse mofeling of signals and images," SIAM Review, Vol. 51, No. 1, 34-81, Feb. 2009.

12. Gurbuz, A. C., J. H. McClellan, and W. R. Scott, Jr., "Compressive sens-ing for GPR imaging," Proc. Asilomar Conf. Signals, Syst., Comput., 2223-2227, Nov. 2007.

13. Gurbuz, A. C., J. H. McClellan, and W. R. Scott, "A compressive sensing data acquisition and imaging method for stepped-frequency GPRs," IEEE Transation on Signal Processing, Vol. 57, No. 7, 2640-2650, Jul. 2009.

14. Huang, Q., L. Qu, B. Wu, and G. Fang, "UWB Throug-wall imaging based on compressive sensing," IEEE Transactions on Geoscience and Remote Sensing, Vol. 48, No. 3, 1408-1415, 2010.

15. Bhattacharya, S., T. Blumensath, B. Mulgrew, and M. Davies, "Fastencoding of synthetic aperture radar raw data using compressedsensing," Proc. IEEE/SP Stat. Signal Process, 448-452, Madison, WI, Aug. 2007.

16. Baraniuk, R. and P. Steeghs, "Compressive radar imaging," Proc. IEEE Radar Conf., 128-133, Boston, MA, Apr. 2007.

17. Herman, M. A. and T. Strohmer, "High-resolution radar via compressed sensing," IEEE Transactions on Signal Processing, Vol. 57, No. 6, 2275-2284, Jun. 2009.

18. Zhang, L., M. Xing, C. Qiu, et al. "Achieving higher resolution ISAR imaging with limited pulses via compressed sampling," IEEE Geoscience and Remote Sensing Letters, Vol. 6, No. 3, 567-571, Jul. 2009.

19. Candes, E. J., J. Romberg, and T. Tao, "Robust uncertainty principles: Exact signal reconstruction from highly incomplete frequency information," IEEE Trans. Inf. Theory, Vol. 52, No. 2, 489-509, Feb. 2006.

20. Tropp, J. A., "Greed is good:algrorithmresults for sparse approximation," IEEE Trans. Inf. Theory, Vol. 50, No. 10, 2231-2242, Oct. 2004.

21. Needell, D. and R. Vershynin, "Uniform uncertainty principle and signal recovery via regularized orthogonal matching pursuit," Found Comput Math, Vol. 9, No. 3, 317-334, Jun. 2009.