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Abstract—Synthetic Aperture Radar (SAR) can obtain a two-
dimensional image of the observed scene. However, the resolution of
conventional SAR imaging algorithm based on Matched Filter (MF)
theory is limited by the transmitted signal bandwidth and the antenna
length. Compressed sensing (CS) is a new approach of sparse signals
recovered beyond the Nyquist sampling constraints. In this paper, a
high resolution imaging method is presented for SAR sparse targets
reconstruction based on CS theory. It shows that the image of
sparse targets can be reconstructed by solving a convex optimization
problem based on L1 norm minimization with only a small number of
SAR echo samples. This indicates the sample size of SAR echo can
be considerably reduced by CS method. Super-resolution property
and point-localization ability are demonstrated using simulated data.
Numerical results show the presented CS method outperforms the
conventional SAR algorithm based on MF even though small sample
size of SAR echo is used in this method.

1. INTRODUCTION

Synthetic aperture radar (SAR) can obtain high resolution images
of illuminated scene under all weather circumstances. It is an
important imaging and detecting tool for many remote sensing
applications in military and civilian fields, including topographic
mapping, target identification, classification, and flight navigation
etc. For conventional standard SAR imaging, the high resolution of
range direction is obtained by the pulse compression of chirp signal,
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and the high resolution of azimuth direction is received through the
synthetic aperture formed by platform movement [1]. Therefore, the
echo samples of standard SAR follow Shannon’s celebrated theorem:
the sampling rate must be at least twice the maximum frequency
of the echo signal (the so-call Nyquist rate) [2]. Till now, the
most popular methods for SAR imaging are based on matched
filtering (MF) theory [3], such as Range-Doppler algorithm [4], Chirp-
Scaling algorithm [5], Spectral Analysis algorithm [6], etc. These
algorithms are mostly based on the Fourier transform or time-
frequency interpolation. The reflections are focused by coherent
accumulation to generate an image of illuminated scene. However,
these traditional SAR imaging methods based on MF have many
obvious disadvantages: 1) the range resolution is limited by the
bandwidth of transmitted signal, and the azimuth resolution is
proportional to the antenna length which is limited by radar system,
therefore high resolution SAR imaging is difficult to be achieved with
low bandwidth and short aperture; 2) According to Nyquist rate, a
large amount of echo samples must be collected which will lead to an
excessive burden of acquired of SAR system; 3) the imaging results
show serious sidelobe interference problems.

In recent years, a new approach named compressed sensing (CS)
which applies to signal reconstruction has attracted more and more
attention [7, 8]. CS indicates that certain signals and images can be
recovered with far fewer samples or measurements than traditional
method. The pre-condition of exact recovery by CS is that the signal
is sparse or compressible in some domain such as time, space and
frequency. Inspired by the idea of CS, more and more efficient schemes
have been proposed for signal reconstruction at much smaller sampling
rate than traditional Nyquist sampling theorem. Due to its compressed
sampling and exact reconstruction ability, CS has been widely used in
many applications, such as data acquisition, communications, remote
sensing, computational biology, medicine imaging, radar, etc. [9–11].
Some applications in radar field are as following. A compressive
sensing data acquisition and imaging system for Ground Penetrating
Radar (GPR) was proposed in [12, 13]. Instead of sampling radar echo
at Nyquist rate, linear projections for echo signal on some random
vectors were used as measurements. A similar theme was presented
for through-wall radar imaging [14]. In order to reduce the amount
of stored SAR raw data, a method based on CS theory was proposed
in [15]. A compressive radar imaging scheme based on CS was proposed
in [16], the system can eliminate the need for the matched filter in
the radar receiver and reduce the required receiver analog-to-digital
conversion bandwidth. In [17], high resolution radar was proposed
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by transmitting specially designed waveforms, where the theory of CS
with random convolution was used by transmitting random noise-like
signals. In [18], resolution enhancement for ISAR imaging under low
SNR via CS was presented. We can see that CS has been got more and
more attention in radar applications, such as to lighten up sampling
burden and improve the resolution of radar system in recent years.

In some special applications (such as ships detecting and city area
imaging), the main scattering targets distribute in a sparse way over
illuminated scene. The number of dominant scatterers is much smaller
than the number of overall samples. In such a case, SAR echo can be
regarded as sparse signal. Thereby, a sparse reconstruction based on
CS can be used in these applications. To overcome the resolution
limitation of conventional SAR imaging method based on MF, we
present a novel high resolution imaging method of SAR based on CS
in this paper. The remarkable advantage of the presented CS method
is that it can obtain higher resolution with fewer measured data than
that obtained under the Nyquist rate. We apply CS to extract the
main strong scattering coefficients by constructing a time-frequency
overwhelming dictionary. Some numerical simulations are presented to
evaluate the potential and limits for the presented method. The results
show that the presented CS method outperforms the conventional
imaging algorithm based on MF method.

This paper is organized into six sections as following. Section 2
gives a brief description of the basis theory of CS. Section 3 contains an
introduction of standard SAR model and MF-based imaging method.
Section 4 describes linear measurement model of SAR echo signal and
presents the imaging algorithm based on CS. Numerical simulated
results and algorithm performance are discussed in Section 5. Finally,
a summary is given in Section 6.

2. BASIS THEORY OF CS

Compressed sensing (CS) is a new theory which enables the
reconstruction of sparse signal using far fewer samples or measurements
than Nyquist rate. Considering a discrete signal vector x ∈ RN , we say
that it is K-sparse if at most K ¿ N of its coefficients is nonzero in an
orthonormal basis or over-complete dictionary Ψ ∈ CN×N . Hence, the
true information is contained in x which lives in at most K dimensions
rather than N . The sparse signal can be expressed as

x = Ψα (1)
where vector α ∈ RN is the weighting coefficient. As the signal x has
a sparse representation in Ψ, x can be well approximated by the best
K term expression.
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According to CS theory, the measured signal is acquired by linear
projections y = Φx. It makes sense that only M samples of signal
x need to be measured instead of N . Then, considering a linear
measurements matrix Φ ∈ CM×N with M < N , the measurements
signal y ∈ RM is descried as

y = Φx = ΦΨα = Θα (2)

where Θ = ΦΨ is a M × N matrix. This set of equations is
underdetermined and (2) has infinitely many solutions. However, it
is indeed possible to recover the sparse signal via CS when the matrix
Φ has the Restricted Isometry Property (RIP) of order K [9]. The
RIP requires that

(1− δK) ‖α‖2
2 ≤ ‖Θα‖2

2 ≤ (1 + δK) ‖α‖2
2 (3)

where α is any vector having K nonzero coefficients, and δK ∈ (0, 1).
The smaller the value δK is, the better the sparse signal can be
reconstructed. The RIP is closely related to an incoherency property.
It is proved that random matrix performs well. If the number of
measurements M ≥ O (K log (N/K)) , the K-sparse signal x can be
exactly reconstructed with high probability [8].

Known the observed vector y and the measured matrix Θ, the
signal x can be recovered from the solution of a convex optimization
problem based on l1 norm.

min ‖α‖1 s.t y = Θα (4)

If noise is taken into account, the modified convex problem can be
described as

minλ ‖α‖1 s.t ‖y −Θα‖2 < ε (5)

where λ is weighted coefficient and ε bounds the amount of noise
in measured data. Recently there are several sparse approximation
algorithms to recover the sparse signal α from measurements y. Such
algorithms include basis pursuit (BP) [19], orthogonal match-pursuit
(OMP) [20] and regularized orthogonal matching pursuit (ROMP) [21].

3. SAR MODEL AND IMAGING

Suppose SAR platform works in stripmap mode, X denotes azimuth
direction and Z is altitude direction. The SAR platform flights along
a track parallel to X axis at altitude H with the constant velocity v.
θ denotes the incidence angle of radar. Nr and Na denote sample size
of range and azimuth respectively.



Progress In Electromagnetics Research, Vol. 109, 2010 67

Suppose the antenna transmits a linear frequency modulated
(LFM) signal as

s(t) = rect

(
t

T

)
· exp

(
j2πfct + jπfdrt

2
)

(6)

where fc denotes carrier frequency, fdr is LFM chirp rata, t is the
fast-time, T is pulse repetition time, and rect (t) denotes the unit
rectangular function rect (t) = 1 when |t| ∈ T/2.

A referenced scatterer with the radar cross section (RCS) σ(Pw)
is supposed at position Pw = (x, y, z). At slow-time n, the slant range
from the scatterer Pw to the SAR platform is written as

R(n;Pw) = ‖P(n)−Pw‖2 ≈ RPw + (vn− x)2 / (2RPw) (7)

where RPw =
√

y2 + H2, P(n) = P(0) + vn · e denotes the position
of SAR platform at slow-time, e is unit voter of azimuth direction.
Then the echo signal of a referenced scatterer Pw can be expressed as
(ignoring the antenna pattern)

sm(t, n;Pw)=σ(Pw) exp
[
j2πfc(t−τ)−jπfdr(t−τ)2

]
, |t| ∈ T/2 (8)

where τ = 2R(n;Pw)/C denotes the echo delay of the target, C is the
speed of light in air. The de-chirping signal is the complex conjugate of
the transmitted signal sf = s∗(t), the demodulated signal is described
as
sm(t, n;Pw) = σ(Pw) exp(−j2πfcτ) exp

[
jπfdr(t−τ)2

]
, |t| ∈ T/2 (9)

For a measurement scene Ω, the echo signal can be written as

Sc(t, n) =
∫

Pw∈Ω

sm(t, n;Pw)dPw (10)

For conventional matched filter (MF) method, for example,
Range-Doppler (RD) algorithm, the image of illuminated scene
is obtained by convoluting the received signal with its complex
conjugated time reversed function. After 2-D focused by RD algorithm,
the focused signal of SAR can be expressed as

So(t, n) ≈
∫

Pw∈Ω

σ(Pw) exp(−jφ) sin c [Br(t−τ)] sin c
[
Ba

(
n−x

v

)]
dPw

(11)
where Br denotes the bandwidth of LFM signal, Ba is the Doppler
bandwidth of azimuth signal, and φ = 4πR/λ denotes the phase
of target. According to (11), the resolution of range and azimuth
directions can be calculate respectively as bellow.

ρr =
C

2Br
, ρa =

D

2
(12)
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where D denotes the antenna aperture in azimuth and λ denotes
the radar wavelength. Hence, high range resolution is achieved by
transmitting a wideband signal, and high azimuth resolution depends
on the antenna aperture.

The Range-Doppler (RD) algorithm is the most commonly used
algorithm for processing continuously collected SAR data into an
image. In (12), the disadvantage of RD algorithm with chirp signal
is that the imaging resolution is limited by bandwidth of signal.
In addition, the existence of sidelobe prevents the discrimination of
targets which are close to each other.

4. SAR IMAGING USING CS

An important prerequisite of CS sparse reconstruction is the signal
must be sparse or compressible in certain representations. For SAR
imaging, the true 3-D illuminated scene is projected into the 2-D
range-azimuth plane, and then the projected targets are not always
sparse. However, the target space can be regarded as sparse in
some special applications in which only a small number of strong
scatterers distribute in the illuminated scene, and the relatively few
large coefficients of the scatterers can capture most of the information
of scene, such as ocean ships monitoring, aircraft and spacecraft
detecting, space debris imaging, and so on. Based on the feature of
sparse signal in these applications, the image can be reconstructed by
the signal of strong scattering centers using the theory of CS, and the
weak scattering centers can be regarded as noise in image.

4.1. Create a Linear Model for SAR Echo Signal

Supposed E ∈ CNa×Nr denotes the scattering coefficients matrix of the
2-D illuminated scene. To easily facilitate the numerical implement,
a long vector σ ∈ CN×1 (N = Na ×Nr) is reformed by the columns
of matrix E. For the sparse targets scene, we assume that σ is K-
sparse when only K (K ¿ N) of its coefficients is nonzero or greater
than zero. The scattering coefficients σ can be expressed in a space
orthogonal basis ψ ∈ RN×N as

σ = ψα (13)

where α is defined as the vector whose nonzero components are
corresponding to the complex amplitudes of K strongest scattering
centers.

In order to use CS, a linear measurement model of SAR should be
created firstly. According to (5) and (6), in discrete scenarios the raw
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echo signal of SAR can be expressed as

Sc(t, n) =
N∑

i=1

σi exp

[
jπfdr

(
t− 2

R(n;Pi)
C

)2

− j4πfc
R(n;Pi)

C

]

N∑

i=1

σi exp


jπfdr


t−2

RPw+(vn−x)2

2RPw

C




2

−j4πfc

RPw+(vn−x)2

2RPw

C




=
N∑

i=1

σi exp [−jφi (t, n)] (14)

So, (14) can be expressed in vector form as

Sc =AT
i σ = AT

i ψα

Ai ={exp [−jφ1 (t, n)] , exp [−jφ2 (t, n)] , . . . , exp [−jφN (t, n)]}T
(15)

where Ai is interpreted as N × 1 measurement vector at the slow-time
n and fast-time t. Reformed by the columns, the vector of SAR echo
signal can be written as

S = [Sc(1, 1), Sc(1, 2), . . . Sc(1, Nr), Sc(2, 1), . . . , Sc(Na, Nr)]
T (16)

The relation between the scattering coefficient vector σ and
measured echo signal S can be written as linear representation model.

S = Aσ+n = Aψα + n (17)

A = [A1,A2, . . . ,Ai, . . . ,AN ]T

=




e−jφ1(1,1)

e−jφ1(1,2)

...
e−jφ1(1,Nr)

e−jφ1(2,1)

...
e−jφ1(Na,Nr)

e−jφ2(1,1)

e−jφ2(1,2)

...
e−jφ2(1,Nr)

e−jφ2(2,1)

...
e−jφ2(Na,Nr)

. . .

. . .

. . .

. . .

. . .

...

. . .

e−jφN (1,1)

e−jφN (1,2)

...
e−jφN (1,Nr)

e−jφN (2,1)

...
e−jφN (Na,Nr)




(18)

where A ∈ CN×N denotes the measurement matrix of SAR echo signal,
and n represents the additive noise. The sampling rate of measured
signal S obeys Nyquist theorem. However, according to CS theory, it
is possible to recover the sparse signal with only a small number of
samples of measured signal S.
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4.2. Random Range-azimuth Samples

In the spirit of CS, a very small number of “random” measurements
carry enough information which can accomplish completely reconstruc-
tion for the signal. According to the feature of RIP in (3), all sub-
matrices of Θ are composed of K significant columns which should be
nearly orthogonal. There are some well-known pairs of incoherent ba-
sis, such as randomly selected Fourier samples and random Gaussian
matrix. Hence, we randomly select M (O (K log(N/K)) ≤ M < N)
rows of matrix A as the final measurement matrix Θ ∈ RM×N [8],
and then the new measured signal can be expressed as

Sp = ΦAψα+n = Θα+n (19)
where Φ denotes a M × N matrix constructed by randomly selected
M rows of N ×N identity matrix which is taken as orthogonal basis.
The randomly selected matrix can be written as

Φ =




1 0 0 . . . 0 0
0 0 1 . . . 0 0
...

... ...
. . .

...
...

0 0 0 . . . 0 1




M×N

(20)

Essentially, the final measurement matrix Θ is constructed by
the measurement matrix A right multiplying with a random line
selected matrix Φ. To facilitate, the random selection can be
substituted for equal interval selection in practice.

Figure 1 shows acquisition of SAR echo data for traditional MF
method and CS method, respectively. The horizontal axis is range
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Figure 1. Samples acquisition for raw echo signal of SAR. (a)
Tradition MF algorithm. (b) The CS method.
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and the vertical axis is azimuth. The black points represent the echo
samples acquisition in the range-azimuth plane. It shows that Na×Nr

samples follow Nyquist rate are a must in traditional SAR imaging
method based on MF. However, only M ¿ Na ×Nr random selected
samples are required in CS method. In this paper, the black points
selected for CS method are achieved as bellow. Firstly, a random
permutation matrix G ∈ RNa×Nr of the integers 1 : Na × Nr is
generated. Secondly, the indices of M largest values are found in
matrix G elements. Lastly, M echo samples are selected from the SAR
echo samples locations which are correspond to the indices obtained in
the second step. Thereby, the presented method based on CS requires
much fewer samples to construct the sparse target compared with
traditional MF method.

Since the matrix Θ, vector Sp and α are complex, in order to using
CS reconstruction from the complex data, (15) should be rewritten as
following.

Re (Sp) + jIm (Sp) = [Re (Θ) + jIm (Θ)] [Re (α) + jIm (α)] (21)

The real and imaginary part of measured signal can be calculated
respectively as

Re (Sp) = Re (Θ)Re (α)− Im (Θ) Im (α)
Im (Sp) = Re (Θ) Im (α) + Im (Θ)Re (α) (22)

We define the signal Ŝ, α̂ and Θ̂ as

Ŝ=
[

Re (Sp)
T

Im (Sp)
T

]
, α̂=

[
Re (α)T

Im (α)T

]
, Θ̂=

[
Re (Θ) −Im (Θ)
Im (Θ) Re (Θ)

]
(23)

Then (19) further can be replaced as

Ŝ = Θ̂α̂ + n (24)

4.3. Signal Reconstruction by CS

To recover the amplitude and phase of the sparse scattering centers
in SAR echo signal, the sparsest solution can be solved by convex
optimization based on l1 norm.

minλ ‖α̂‖1 s.t
∥∥∥Ŝ−Θα̂

∥∥∥
2

< ε (25)

where the amount of noise ε can be estimated from measured data Ŝ
of echo signal. The main flow chart of imaging algorithm for SAR base
on CS is shown in Figure 2.
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1
2

ˆˆ ˆmin  s.tλ − <α αS Θ ε

Figure 2. The flow chart of the presented CS method for SAR
imaging.

5. SIMULTION AND DISCUSSIONS

In order to evaluate the performance of the presented method, in
this section some numerical simulated experiments are presented at
different SNR level and normalized measurements number M/N . The
processing is also implemented for MF, and the results are compared
between the two methods.

5.1. Imaging Evaluation

In this paper, the performance of the MF-based RD algorithm and the
presented CS method for SAR imaging are evaluated in terms of three
indicators: the peak sidelobe ratio (PSLR), the reconstruction relative
error (RE) and a 3 dB beamwidth of point spread function.

PSLR is defined as the ratio which is peak intensity of the most
prominent sidelobe to the peak intensity of the mainlobe.

PSLR = 10 log10

max
|x|<ρx,|y|<ρy

[
H2(x, y)

]

max
ρx<|x|<5ρx,ρy<|y|<5ρy

[
H2(x, y)

] (26)

where ρx and ρy denote the half width of mainlobe in range and in
azimuth respectively, H(x, y) is the focused signal of point-scatter.
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Figure 3. A 3 dB beamwidth of point spread function.

RE of reconstruction image is defined as follow.

RE =





M∑
x=1

N∑
y=1

[
Î(x, y)− I(x, y)

]2

M∑
x=1

N∑
y=1

[I(x, y)]2





1
2

(27)

where I(x, y) denotes the original image of scattering coefficients for
illuminated scene, and Î(x, y) is the reconstructed one. Apparently,
the lower the value of RE is, the better the reconstructed performance
will be.

A 3 dB beamwidth of point spread function is an important
indicator for the extracted target’s scattering centers and it is shown
in Figure 3. It is particularly suitable for the representation of
spatial resolution in SAR imaging. Therefore, in order to achieve
high resolution, the imaging method needs to obtain narrow 3 dB
beamwidth.

5.2. Results and Discussion

Assume that SAR carrier frequency fc = 10GHz, the bandwidth of
LEM signal Br = 150 MHz, the number of slow-time samples and
fast-time samples (both obey Nyquist rate) are Na = 64 and Nr = 64
respectively, thus the total samples is N = Na×Nr = 4096. According
to the resolution formula of MF method in (12), the range resolution
is ρr = 1 m, and the azimuth resolution is ρat = 1m. In this section,
the simulations of two scenes are tested, one is a sample scene has nine
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Figure 4. The original simulated scene. (a) Nine point targets. (b)
A ship from ERS SAR image.

point targets, and another is a complex scene has a ship from ERS
SAR image. The original scenes are shown in Figure 4.

Figure 5 shows the imaging results of nine point targets with
different SNR level using both MF-based RD algorithm and the
presented CS method respectively. The nine point scatterers have the
same coefficient. The echo signals are added by Gaussian white noise
with different signal noise ratio (SNR) level (noise free, SNR = 30 dB,
10 dB). The results of RD algorithm for the scene are shown in
Figure 5(a). There is serious sidelobe interference in the imaging
results using RD algorithm at all SNR level, and some details of
positions or scattering coefficients of the targets are missing or fuzzy as
the distance between adjacent targets are too close. Using the sparse
information of the target space and solving the convex optimization
problem, the results of the presented CS method using only 10%
random samples at different SNR level are shown in Figure 5(b). At
high SNR level, It is observed that the actual target positions and
amplitudes are clearly reconstructed compared with the RD algorithm.
In addition, the value of sidelobe in CS method is far less than that
in RD method, and the resolution is improved even using a smaller
sample size. At low SNR level, CS results have some false values in no
target positions; But RD obtains almost the same results as high SNR
because of MF processing can suppress noise.

Figure 6 shows the imaging results of the ship scene by MF-based
RD algorithm and the presented CS method respectively. The original
ship image from ERS SAR is shown in Figure 4(b). In order to
facilitate analysis, the ocean scattering is ignored as it is very weak
compared with ship scattering. The sparsity of original ship image
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Figure 5. The imaging results of nine point targets with different
SNR level. (a) The RD algorithm results using all samples. (b) The
CS method results using only 10% echo samples.

ζ = K/N = 0.086. The echo signals are also added by Gaussian
white noise with different SNR level (noise free, SNR =20dB, 10 dB).
The imaging results of RD are shown in Figure 6(a). The imaging
results of the presented CS method using 50% and 20% echo samples
is shown in Figure 6(b) and Figure 6(c) respectively. The results show
that the locations and scattering coefficients of ship scene are well
extracted with low sidelobe by CS method at high SNR level, and some
false targets appear at SNR = 10 dB. Compared with the traditional
MF method, the presented CS method can significantly improve the
imaging resolution of SAR when SNR is above 20 dB. Notably, the
performance of CS relies on the number of measurements. The larger
the number of echo samples are, the more scattering centers can be
reconstructed.

To illustrate the resolution capability of CS method by a 3 dB
beamwidth of point spread function, a simulation for single point
target imaging is performed. Figure 7 shows the spectrum results of
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(a)

(b)

(c)

Figure 6. The imaging results of a ship scene with different SNR
level. (a) RD algorithm results using all echo samples (left: noise
free, middle: SNR = 20 dB, right: SNR = 10 dB). (b) and (c) are CS
method results using only 50% and 20% echo samples (left: noise free,
middle: SNR = 20 dB, right: SNR = 10 dB).

point spread function (PSF) at different SNR for both MF method
and CS method respectively. According to the resolution formula
of MF method, the spectrum is sinc function and the value of the
maximum sidelobe is about −13.4 dB, and the 3 dB beamwidth of
mainlobe is about 1 m. It is obvious that the spectrums of PSF of MF
method are stable when SNR changes from noise free to SNR = 5dB.
When the data is noiseless, the value of the maximum sidelobe is
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Figure 7. Spectrum of point spread function both in range and
azimuth with different SNR level (Noise free, SNR = 30dB, 20 dB,
10 dB, 5 dB).

about −81.3 dB in spectrums of PSF obtained by CS method, and
the 3 dB beamwidth of mainlobe is apparently much smaller than that
of MF method. However, the value of the maximum sidelobe is about
−6.8 dB in spectrums of PSF obtained by CS method when SNR is
5 dB. Thereby, CS method is sensitive to noise, and the maximum
sidelobe will increase as SNR decreases. If SNR is above 20 dB, the
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3 dB beamwidth of PSF and the value of sidelobe of the presented CS
method are both less than that of traditional MF method. Therefore,
compared with the traditional MF method by 3 dB beamwidth, the
presented method based CS significantly improves the resolution of
SAR imaging at high SNR.

To analyze the influence of noise, imaging results of single point
target for RD and CS methods with different signal noise ratio (SNR)
are evaluated in terms of PSLR in Figure 8. At each SNR level,
100 independent trials are performed. The results of PSLR indicate
that the presented CS imaging method is extremely better than MF
method at high SNR (SNR ≥ 15 dB). It is notable that the number of
measurements in CS method must be greater than O (K log(N/K)). A
disadvantage of the CS imaging method is that it is sensitive to noise.
Performance deteriorates with the decreases of SNR and the PSLR of
CS method is lower than MF method when the SNR bellows 10 dB.

Figure 9 shows the RE of the constructed ship images by CS
method versus the different normalized number of the measurements
M/N and different SNR. The original image is shown in Figure 4(b).
The RE of standard RD algorithm using all samples is 0.532. In
Figure 9(a), the result demonstrates that the CS method outperforms
the RD algorithm when the normalized number of the measurements is
more than 0.16, but the performance of CS method begins to degrade
markedly when the normalized number of the measurements is less
than 0.16. Figure 9(b) plots the RE of Both RD with all samples and
CS with only 20% random samples at different level of SNR at different
SNR level. It is observed that the CS method has smaller RE than
the RD method when the SNR is more than 15 dB. For the different
SNR form 5 dB to 40 dB, the RE of imaging result of standard RD
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Figure 8. PSLR of the CS method and MF method at different SNR
level.
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Figure 9. The relative error of ship scene reconstruction by CS
method. (a) The RE versus the normalized number of measurements
M/N for a N = 4096 original image with sparsity K = 0.086. (b)
Comparison the RE of imaging results between the RD algorithm with
all echo samples and the CS method with only 20% echo samples at
different level of SNR.

method does not change too much because there is resolution limited
for MF-based RD imaging. The presented CS method provides much
lower RE when the SNR changes from 5dB to 20 dB, and is stable for
SNR > 20 dB. This also indicates that the CS method outperforms the
traditional MF-based RD method for the sparse target SAR imaging.

For the computation, MF method using RD is about
O [N log2 (N)], and the presented CS method using basis pursuit is
approximately O

(
N3

)
. N is the measured sample. So the compu-

tation of CS method is always much higher than MF method. But
in recent two years, some fast CS methods have been proposed, and
the computation can be reduced to O

(
NK2

)
, and K is the sparse tar-

gets. Compared with the traditional MF method, CS method increases
the computational burden but obtains higher resolution with smaller
measured samples.

6. CONCLUSION

This paper presents a sparse reconstruction method for SAR imaging
based on CS theory, which aims at sparse targets reconstruction
using less echo samples than Nyquist samples by solving convex linear
problem. Compared with traditional MF-based RD imaging method,
the presented method significantly suppresses the sidelobe and greatly
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improves the imaging performance of SAR when the target space is
sparse. Simulated results show a better performance of the presented
method compared with traditional MF method. The sampling rate
at SAR can be dramatically reduced. However, there are still some
challenges need to be overcome in SAR imaging based on CS. The
robustness of CS imaging needs to be improved with existence of serious
noise.
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