Vol. 18
Latest Volume
All Volumes
PIERL 123 [2025] PIERL 122 [2024] PIERL 121 [2024] PIERL 120 [2024] PIERL 119 [2024] PIERL 118 [2024] PIERL 117 [2024] PIERL 116 [2024] PIERL 115 [2024] PIERL 114 [2023] PIERL 113 [2023] PIERL 112 [2023] PIERL 111 [2023] PIERL 110 [2023] PIERL 109 [2023] PIERL 108 [2023] PIERL 107 [2022] PIERL 106 [2022] PIERL 105 [2022] PIERL 104 [2022] PIERL 103 [2022] PIERL 102 [2022] PIERL 101 [2021] PIERL 100 [2021] PIERL 99 [2021] PIERL 98 [2021] PIERL 97 [2021] PIERL 96 [2021] PIERL 95 [2021] PIERL 94 [2020] PIERL 93 [2020] PIERL 92 [2020] PIERL 91 [2020] PIERL 90 [2020] PIERL 89 [2020] PIERL 88 [2020] PIERL 87 [2019] PIERL 86 [2019] PIERL 85 [2019] PIERL 84 [2019] PIERL 83 [2019] PIERL 82 [2019] PIERL 81 [2019] PIERL 80 [2018] PIERL 79 [2018] PIERL 78 [2018] PIERL 77 [2018] PIERL 76 [2018] PIERL 75 [2018] PIERL 74 [2018] PIERL 73 [2018] PIERL 72 [2018] PIERL 71 [2017] PIERL 70 [2017] PIERL 69 [2017] PIERL 68 [2017] PIERL 67 [2017] PIERL 66 [2017] PIERL 65 [2017] PIERL 64 [2016] PIERL 63 [2016] PIERL 62 [2016] PIERL 61 [2016] PIERL 60 [2016] PIERL 59 [2016] PIERL 58 [2016] PIERL 57 [2015] PIERL 56 [2015] PIERL 55 [2015] PIERL 54 [2015] PIERL 53 [2015] PIERL 52 [2015] PIERL 51 [2015] PIERL 50 [2014] PIERL 49 [2014] PIERL 48 [2014] PIERL 47 [2014] PIERL 46 [2014] PIERL 45 [2014] PIERL 44 [2014] PIERL 43 [2013] PIERL 42 [2013] PIERL 41 [2013] PIERL 40 [2013] PIERL 39 [2013] PIERL 38 [2013] PIERL 37 [2013] PIERL 36 [2013] PIERL 35 [2012] PIERL 34 [2012] PIERL 33 [2012] PIERL 32 [2012] PIERL 31 [2012] PIERL 30 [2012] PIERL 29 [2012] PIERL 28 [2012] PIERL 27 [2011] PIERL 26 [2011] PIERL 25 [2011] PIERL 24 [2011] PIERL 23 [2011] PIERL 22 [2011] PIERL 21 [2011] PIERL 20 [2011] PIERL 19 [2010] PIERL 18 [2010] PIERL 17 [2010] PIERL 16 [2010] PIERL 15 [2010] PIERL 14 [2010] PIERL 13 [2010] PIERL 12 [2009] PIERL 11 [2009] PIERL 10 [2009] PIERL 9 [2009] PIERL 8 [2009] PIERL 7 [2009] PIERL 6 [2009] PIERL 5 [2008] PIERL 4 [2008] PIERL 3 [2008] PIERL 2 [2008] PIERL 1 [2008]
2010-09-30
Electromagnetic Scattering from a Chiral-Coated Nihility Cylinder
By
Progress In Electromagnetics Research Letters, Vol. 18, 41-50, 2010
Abstract
Scattering of electromagnetic plane waves from an infinitely long nihility cylinder, coated with a chiral layer of uniform thickness, is presented. Cylindrical vector wave functions have been used to express the fields in different regions. The solution is determined by solving the wave equation for different regions and applying the appropriate boundary conditions at the discontinuities. Both TM and TE polarizations as incident plane wave have been considered in the analysis. Obtained Numerical results for the chiral-coated nihility cylinder are compared with a chiral-coated PEC cylinder.
Citation
Shakeel Ahmed, and Qaisar Naqvi, "Electromagnetic Scattering from a Chiral-Coated Nihility Cylinder," Progress In Electromagnetics Research Letters, Vol. 18, 41-50, 2010.
doi:10.2528/PIERL10072807
References

1. Jaggard, D. L., A. R. Mickelson, and C. H. Papas, "On electromagnetic waves in chiral media," Appl. Phys., Vol. 18, 211-216, 1979.
doi:10.1007/BF00934418

2. Engheta, N. and S. Bassiri, "One- and two-dimensional dyadic Greens functions in chiral media," IEEE Trans. Antennas Propagat., Vol. 37, 512-515, Apr. 1989.
doi:10.1109/8.24173

3. Engheta, N. and D. L. Jaggard, "Electromagnetic chirality and its applications," IEEE Antennas Propagat. Soc. Newslett., Vol. 30, 6-12, Oct. 1988.

4. Lakhtakia, A., V. V. Varadan, and V. K. Varadan, "Field equations, Huygens principle, integral equations, and theorems for radiation and scattering of electromagnetic waves in isotropic chiral media," J. Opt. Soc. Amer. A, Vol. 5, 175-184, Feb. 1988.
doi:10.1364/JOSAA.5.000175

5. Kluskens, M. S. and E. H. Newman, "Scattering by a chiral cylinder of arbitrary cross section," IEEE Trans. Antennas Propagat., Vol. 38, 1448-1455, Sep. 1990.
doi:10.1109/8.56998

6. Kluskens, M. S. and E. H. Newman, "Scattering by a multilayer chiral cylinder," IEEE Trans. Antennas Propagat., Vol. 39, 91-96, Jan. 1991.
doi:10.1109/8.64441

7. Al-Kanhal, M., "Electromagnetic scattering from chiral cylinders of arbitrary cross section,", Ph.D. Dissertation, Syracuse University, Dec. 1994.

8. Arvas, E. and M. Alkanhal, "Electromagnetic scattering from chiral cylinder of arbitrary cross-section," URSI Radio Sci. Meet., Seattle, WA, Jun. 1994.

9. Al-Kanhal, M. A. and E. Arvas, "Electromagnetic scattering from chiral cylinder of arbitrary cross-section," IEEE Trans. Antennas Propagat., Vol. 44, 1041-1048, Jul. 1996.
doi:10.1109/8.504313

10. Lakhtakia, A., "An electromagnetic trinity from `negative permittivity' and `negative permeability'," Int. J. Infrared Millim. Waves, Vol. 22, 1731-1734, 2001.
doi:10.1023/A:1015068715023

11. Lakhtakia, A., "An electromagnetic trinity from `negative permittivity' and `negative permeability'," Int. J. Infrared Millim. Waves, Vol. 23, 813-818, 2002.
doi:10.1023/A:1015726915359

12. Lakhtakia, A. and J. B. Goddes, "Scattering by nihility cylinder," Int. J. Electron. Commun., Vol. 61, 62-65, (AEÜ) 2007.
doi:10.1016/j.aeue.2006.02.008

13. Lakhtakia, A., "On perfect lenses and nihility," Int. J. Infrared Millim. Waves, Vol. 23, 339-343, 2002.
doi:10.1023/A:1015038701978

14. Lakhtakia, A. and J. A. Sherwin, "Orthorhombic materials and perfect lenses," Int. J. Infrared Millim. Waves, Vol. 24, 19-23, 2003.
doi:10.1023/A:1021675514687

15. Ziolkowski, R. W., "Propagation in and scattering from a matched metamaterial having a zero index of refraction," Phys. Rev. E, Vol. 70, 046608, 2004.
doi:10.1103/PhysRevE.70.046608

16. Lakhtakia, A. and T. G. Mackay, "Fresnel coeffcients for a permittivity-permeability phase space encompassing vacuum, anti-vacuum, and nihility," Microwave Opt. Technol. Lett., Vol. 48, 26570, 2006.

17. Tretyakov, S., I. Nefedov, A. Sihvola, S. Maslovski, and C. Simovski, "Waves and energy in chiral nihility," Journal of Electromagnetic Waves and Applications, Vol. 17, No. 5, 695-706, 2003.
doi:10.1163/156939303322226356

18. Cheng, Q., T. J. Cui, and C. Zhang, "Waves in planar waveguide containing chiral nihility metamaterial," Optics Communications, Vol. 276, 317-321, 2007.
doi:10.1016/j.optcom.2007.04.053

19. Naqvi, Q. A., "Planer slab of chiral nihility metamaterial backed by fractional dual/PEMC interface," Progress In Electromagnetics Research, Vol. 85, 381-391, 2008.
doi:10.2528/PIER08081201

20. Naqvi, Q. A., "Fractional dual solutions to the Maxwell equations in chiral nihility medium," Optics Communications, Vol. 282, 2016-2018, 2009.
doi:10.1016/j.optcom.2009.02.022

21. Ahmed, S. and Q. A. Naqvi, "Directive EM radiation of a line source in the presence of a coated nihility cylinder," Journal of Electromagnetic Waves and Applications, Vol. 23, No. 5-6, 761-771, 2009.
doi:10.1163/156939309788019886

22. Ahmed, S. and Q. A. Naqvi, "Scattering of electromagnetic waves from a nihility circular cylinder coated with a metamaterial," Journal of Infrared, Millimeter and Terahertz Waves, Vol. 30, 1044-1052, 2009.
doi:10.1007/s10762-009-9531-5

23. Al Sharkawy, M. and A. Z. Elsherbeni, "Electromagnetic scattering from parallel chiral cylinders of circular cross sections using an iterative procedure," Progress In Electromagnetics Research, Vol. 47, 87-110, 2004.
doi:10.2528/PIER03102101

24. Stratton, J. A., Electromagnetic Theory, McGraw-Hill, New York, 1941.