Vol. 27
Latest Volume
All Volumes
PIERB 109 [2024] PIERB 108 [2024] PIERB 107 [2024] PIERB 106 [2024] PIERB 105 [2024] PIERB 104 [2024] PIERB 103 [2023] PIERB 102 [2023] PIERB 101 [2023] PIERB 100 [2023] PIERB 99 [2023] PIERB 98 [2023] PIERB 97 [2022] PIERB 96 [2022] PIERB 95 [2022] PIERB 94 [2021] PIERB 93 [2021] PIERB 92 [2021] PIERB 91 [2021] PIERB 90 [2021] PIERB 89 [2020] PIERB 88 [2020] PIERB 87 [2020] PIERB 86 [2020] PIERB 85 [2019] PIERB 84 [2019] PIERB 83 [2019] PIERB 82 [2018] PIERB 81 [2018] PIERB 80 [2018] PIERB 79 [2017] PIERB 78 [2017] PIERB 77 [2017] PIERB 76 [2017] PIERB 75 [2017] PIERB 74 [2017] PIERB 73 [2017] PIERB 72 [2017] PIERB 71 [2016] PIERB 70 [2016] PIERB 69 [2016] PIERB 68 [2016] PIERB 67 [2016] PIERB 66 [2016] PIERB 65 [2016] PIERB 64 [2015] PIERB 63 [2015] PIERB 62 [2015] PIERB 61 [2014] PIERB 60 [2014] PIERB 59 [2014] PIERB 58 [2014] PIERB 57 [2014] PIERB 56 [2013] PIERB 55 [2013] PIERB 54 [2013] PIERB 53 [2013] PIERB 52 [2013] PIERB 51 [2013] PIERB 50 [2013] PIERB 49 [2013] PIERB 48 [2013] PIERB 47 [2013] PIERB 46 [2013] PIERB 45 [2012] PIERB 44 [2012] PIERB 43 [2012] PIERB 42 [2012] PIERB 41 [2012] PIERB 40 [2012] PIERB 39 [2012] PIERB 38 [2012] PIERB 37 [2012] PIERB 36 [2012] PIERB 35 [2011] PIERB 34 [2011] PIERB 33 [2011] PIERB 32 [2011] PIERB 31 [2011] PIERB 30 [2011] PIERB 29 [2011] PIERB 28 [2011] PIERB 27 [2011] PIERB 26 [2010] PIERB 25 [2010] PIERB 24 [2010] PIERB 23 [2010] PIERB 22 [2010] PIERB 21 [2010] PIERB 20 [2010] PIERB 19 [2010] PIERB 18 [2009] PIERB 17 [2009] PIERB 16 [2009] PIERB 15 [2009] PIERB 14 [2009] PIERB 13 [2009] PIERB 12 [2009] PIERB 11 [2009] PIERB 10 [2008] PIERB 9 [2008] PIERB 8 [2008] PIERB 7 [2008] PIERB 6 [2008] PIERB 5 [2008] PIERB 4 [2008] PIERB 3 [2008] PIERB 2 [2008] PIERB 1 [2008]
2010-11-09
New Implementation of the Conjugate Gradient Based on the Impedance Operator to Analyse Electromagnetic Scattering
By
Progress In Electromagnetics Research B, Vol. 27, 21-36, 2011
Abstract
An original iterative method based on the conjugate gradient algorithm is developed in this paper to study electromagnetic scattering. The Generalized Equivalent Circuit (GEC) method is used to model the problem and then deduce an electromagnetic equation based on the impedance operator. For validation purposes, the developed method has been applied to various iris structures. Results computed using the new implementation of the conjugate gradient are similar to theoretical values. The field and current distribution are identical to the ones obtained with the moment method. Moreover, the memory resources required for storage are significantly reduced.
Citation
Haifa Belhadj, Sonia Mili, and Taoufik Aguili, "New Implementation of the Conjugate Gradient Based on the Impedance Operator to Analyse Electromagnetic Scattering," Progress In Electromagnetics Research B, Vol. 27, 21-36, 2011.
doi:10.2528/PIERB10072803
References

1. Tsang, L., J. A. Kong, and K. Ding, Scattering of Electromagnetic Waves: Theories and Applications, John Wiley and Sons, Canada, 2000.
doi:10.1002/0471224286

2. Fleming, A. H. J., "A finite element method for composite scatterers," Progress In Electromagnetic Research, Vol. 2, 69-112, 1990.

3. Harrington, R. F., Field Computation by Moment Methods, Macmillan, New York, 1968.

4. Harrington, R. F. and T. K. Sarkar, "Boundary elements and the method of moments," 5th Int. Conf. Boundary Elements, 31-40, Hiroshima, Japan, November 8-11, 1983.

5. Nocedal, J. and S. Wright, Numerical Optimization, Springer Series in Operations Research, Springer-Verlag, New York, 1999.

6. Sarkar, T. K., "The conjugate gradient method as applied to electromagnetic field problems," IEEE Antennas and Propagation Society Newsletter, August 1986.

7. Volakis, J. L. and K. Barkeshli, "Applications of the conjugate gradient FFT method to radiation and scattering," Progress In Electromagnetic Research, Vol. 5, 159-239, 1991.

8. Peterson, A. F., S. L. Ray, C. H. Chan, and R. Mittra, "Numerical implementation of the conjugate gradient method and the Cg-FFT for electromagnetic scattering," Progress In Electromagnetic Research, Vol. 5, 241-300, 1991.

9. Sarkar, T. K., E. Arvas, and S. M. Rao, "Application of FFT and the conjugate gradient method for the solution of electromagnetic radiation from electrically large and small conducting bodies," IEEE Trans. Antennas Propagat., Vol. 34, No. 5, 635-640, 1986.
doi:10.1109/TAP.1986.1143871

10. Peterson, A. F. and R. Mittra, "Convergence of the conjugate gradient method when applied to matrix equations representing electromagnetic scattering problems," IEEE Trans. Antennas Propagat., Vol. 34, 1447-1454, 1986.
doi:10.1109/TAP.1986.1143780

11. Barkeshli, K. and J. L. Volakis, "Improving the convergence rate of the conjugate gradient FFT using subdomain basis functions," IEEE Trans. Antennas Propagat., Vol. 37, No. 7, 893-900, 1989.
doi:10.1109/8.29384

12. Cwik, T. A. and R. Mittra, "Scattering from a periodic array of free-standing arbitrarily shaped perfectly conducting or resistive patches," IEEE Trans. Antennas Propagat., Vol. 35, 1226-1234, 1987.
doi:10.1109/TAP.1987.1143999

13. Baudrand, H., "Representation by equivalent circuit of the integrals methods in microwave passive elements," European Microwave Conference, Vol. 2, 1359-1364, Budapest, Hungary, September 10-13, 1990.

14. Aguili, T., "Modélisation des composantes SFH planaires par la méthode des circuits équivalents généralisés,", Thesis Manuscript, National Engineering School of Tunis, Tunisia, 2000.

15. Baudrand, H. and D. Bajon, "Equivalent circuit representation for integral formulations of electromagnetic problems," International Journal of Numerical Modelling-electronic Networks Devices and Fields, Vol. 15, 23-57, January-February 2002.

16. Aubert, H. and H. Baudrand, L'Electromagnétisme par les Schémas Equivalents,, Cepaduès Éditions, 2003.

17. Markuwitz, N., Waveguide Handbook, Wiley-Interscience, New York, 1986.

18. Collin, E. R., Foundations for Microwave Engineering, Donald G. Dudley, Series Editor, IEEE Press, 2001.
doi:10.1109/9780470544662

19. Baudrand, H., Introduction au Calcul des Eléments de Circuits Passifs en Hyperfréquence, Cepaduès Éditions, 2001.