Vol. 109
Latest Volume
All Volumes
PIER 180 [2024] PIER 179 [2024] PIER 178 [2023] PIER 177 [2023] PIER 176 [2023] PIER 175 [2022] PIER 174 [2022] PIER 173 [2022] PIER 172 [2021] PIER 171 [2021] PIER 170 [2021] PIER 169 [2020] PIER 168 [2020] PIER 167 [2020] PIER 166 [2019] PIER 165 [2019] PIER 164 [2019] PIER 163 [2018] PIER 162 [2018] PIER 161 [2018] PIER 160 [2017] PIER 159 [2017] PIER 158 [2017] PIER 157 [2016] PIER 156 [2016] PIER 155 [2016] PIER 154 [2015] PIER 153 [2015] PIER 152 [2015] PIER 151 [2015] PIER 150 [2015] PIER 149 [2014] PIER 148 [2014] PIER 147 [2014] PIER 146 [2014] PIER 145 [2014] PIER 144 [2014] PIER 143 [2013] PIER 142 [2013] PIER 141 [2013] PIER 140 [2013] PIER 139 [2013] PIER 138 [2013] PIER 137 [2013] PIER 136 [2013] PIER 135 [2013] PIER 134 [2013] PIER 133 [2013] PIER 132 [2012] PIER 131 [2012] PIER 130 [2012] PIER 129 [2012] PIER 128 [2012] PIER 127 [2012] PIER 126 [2012] PIER 125 [2012] PIER 124 [2012] PIER 123 [2012] PIER 122 [2012] PIER 121 [2011] PIER 120 [2011] PIER 119 [2011] PIER 118 [2011] PIER 117 [2011] PIER 116 [2011] PIER 115 [2011] PIER 114 [2011] PIER 113 [2011] PIER 112 [2011] PIER 111 [2011] PIER 110 [2010] PIER 109 [2010] PIER 108 [2010] PIER 107 [2010] PIER 106 [2010] PIER 105 [2010] PIER 104 [2010] PIER 103 [2010] PIER 102 [2010] PIER 101 [2010] PIER 100 [2010] PIER 99 [2009] PIER 98 [2009] PIER 97 [2009] PIER 96 [2009] PIER 95 [2009] PIER 94 [2009] PIER 93 [2009] PIER 92 [2009] PIER 91 [2009] PIER 90 [2009] PIER 89 [2009] PIER 88 [2008] PIER 87 [2008] PIER 86 [2008] PIER 85 [2008] PIER 84 [2008] PIER 83 [2008] PIER 82 [2008] PIER 81 [2008] PIER 80 [2008] PIER 79 [2008] PIER 78 [2008] PIER 77 [2007] PIER 76 [2007] PIER 75 [2007] PIER 74 [2007] PIER 73 [2007] PIER 72 [2007] PIER 71 [2007] PIER 70 [2007] PIER 69 [2007] PIER 68 [2007] PIER 67 [2007] PIER 66 [2006] PIER 65 [2006] PIER 64 [2006] PIER 63 [2006] PIER 62 [2006] PIER 61 [2006] PIER 60 [2006] PIER 59 [2006] PIER 58 [2006] PIER 57 [2006] PIER 56 [2006] PIER 55 [2005] PIER 54 [2005] PIER 53 [2005] PIER 52 [2005] PIER 51 [2005] PIER 50 [2005] PIER 49 [2004] PIER 48 [2004] PIER 47 [2004] PIER 46 [2004] PIER 45 [2004] PIER 44 [2004] PIER 43 [2003] PIER 42 [2003] PIER 41 [2003] PIER 40 [2003] PIER 39 [2003] PIER 38 [2002] PIER 37 [2002] PIER 36 [2002] PIER 35 [2002] PIER 34 [2001] PIER 33 [2001] PIER 32 [2001] PIER 31 [2001] PIER 30 [2001] PIER 29 [2000] PIER 28 [2000] PIER 27 [2000] PIER 26 [2000] PIER 25 [2000] PIER 24 [1999] PIER 23 [1999] PIER 22 [1999] PIER 21 [1999] PIER 20 [1998] PIER 19 [1998] PIER 18 [1998] PIER 17 [1997] PIER 16 [1997] PIER 15 [1997] PIER 14 [1996] PIER 13 [1996] PIER 12 [1996] PIER 11 [1995] PIER 10 [1995] PIER 09 [1994] PIER 08 [1994] PIER 07 [1993] PIER 06 [1992] PIER 05 [1991] PIER 04 [1991] PIER 03 [1990] PIER 02 [1990] PIER 01 [1989]
2010-10-01
On the Scattering of Electromagnetic Waves by a Charged Sphere
By
Progress In Electromagnetics Research, Vol. 109, 17-35, 2010
Abstract
Scattering of electromagnetic radiation by a charged homogeneous spherical particle/body is treated. Theoretical solution represents a generalization of the Mie's scattering theory for electrically neutral sphere. It is shown that classical and quantum physics approaches may lead to different conclusions, as documented by numerical computations assuming various permeabilities, refractive indices, surface charges, temperatures, and other physical parameters of the spherical particles. Two discrete wavelengths (5 μm and 1mm) of the incident radiation are considered. Optical properties of charged particles composed of absorbing and slightly absorbing materials can essentially differ. Especially, the resonance peaks typically occur when imaginary part of particle refractive index is low. The relative permeability of a material may differ from unity at large wavelengths, e.g., in microwave region. Basically, the relative permeability appears to be less important factor than the surface charge. However, the permeability can influence the scattering and extinction efficiencies, as well as the backscattering features of small particles, under some conditions.
Citation
J. Klacka, and Miroslav Kocifaj, "On the Scattering of Electromagnetic Waves by a Charged Sphere," Progress In Electromagnetics Research, Vol. 109, 17-35, 2010.
doi:10.2528/PIER10072708
References

1. Mie, G., "Beitrage zur optik trűber medien speziell kolloidaler metalősungen," Ann. Phys., Vol. 25, 377-445, 1908.

2. Bohren, C. F. and A. J. Hunt, "Scattering of electromagnetic waves by a charged sphere," Can. J. Phys., Vol. 55, 1930-1935, 1977.

3. Klačka, J. and M. Kocifaj, "Scattering of electromagnetic waves by charged spheres and some physical consequences," J. Quant. Spectroscopy & Radiative Transfer, Vol. 106, 170-183, 2007.

4. Pillai, S. O., Solid State Physics, 6 Ed., New Age Science, Tunbridge Wells, Kent, UK, 2010.

5. Heifetz, A., H. T. Chien, S. Liao, N. Gopalsami, and A. C. Raptis, "Millimeter wave scattering from neutral and charged water droplets," J. Quant. Spectroscopy & Radiative Transfer, 2010, doi:10.1016/j.jqsrt.2010.08.001.

6. Mishchenko, M., L. D. Travis, and A. A. Lacis, Scattering, Absorption and Emission of Light by Small Particles, Cambridge University Press, Cambridge, UK, 2002.

7. Mishchenko, M. I., "Far-field approximation in electromagnetic scattering," J. Quant. Spectroscopy & Radiative Transfer, Vol. 100, 268-276, 2006.

8. Harada, Y. and T. Asakura, "Radiation forces on a dielectric sphere in the Rayleigh scattering regime," Optics Comm., Vol. 124, 529-541, 1996.

9. Rosenkrantz, E. and S. Arnon, "Enhanced absorption of light by charged nanoparticles," Opt. Lett., Vol. 35, 1178-1180, 2010.

10. Dressel, M. and G. Grüner, Electrodynamics of Solids: Optical Properties of Electrons in Matter, Cambridge University Press, Cambridge, UK, 2002.

11. Meschede, D., Optics Light and Lasers, 2 Ed., 88, Wiley-VCH Verlag, Weinheim, 2007.

12. Giaquinta, M. and G. Modica, Mathematical Analysis: An Introduction to Functions of Several Variables, 227-228, Birkhäuser, a Part of Springer Science+Business Media, LLC, Boston, 2009.

13. Lyle, S. N., Self-Force and Inertia: Old Light on New Ideas, Springer-Verlag, Berlin, 2010.

14. Klačka, J., "Electromagnetic radiation, motion of a particle and energy-mass relation,", arXiv: astro-ph/0807.2915, 2008.

15. Sabah, C. and S. Uckun, "Multilayer system of Lorentz/Drude type metamaterials with dielectric slab and its application to electromagnetic filters," Progress In Electromagnetic Research, Vol. 91, 349-364, 2009.

16. Koledintseva, M.-Y., R.-E. DuBroff, R.-W. Schwarts, and J.-L. Drewniak, "Double statistical distribution of conductivity and aspect ratio of inclusions in dielectric mixtures at microwave frequencies," Progress In Electromagnetic Research, Vol. 77, 193-214, 2007.

17. He, S., Z. Nie, and J. Hu, "Numerical solution of scattering from thin dielectric-coated conductors based on TDS approximation and EM boundary conditions," Progress In Electromagnetic Research, Vol. 93, 339-354, 2009.

18. Sha, W.-E.-I. and W.-C. Chew, "High frequency scattering by an impenetrable sphere," Progress In Electromagnetic Research, Vol. 97, 291-325, 2009.

19. Censor, D., "Relativistic electrodynamics: Various postulate and ratiocination frameworks," Progress In Electromagnetic Research, Vol. 52, 301-320, 2005.