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Abstract—Scattering of electromagnetic radiation by a charged
homogeneous spherical particle/body is treated. Theoretical solution
represents a generalization of the Mie’s scattering theory for electrically
neutral sphere. It is shown that classical and quantum physics
approaches may lead to different conclusions, as documented by
numerical computations assuming various permeabilities, refractive
indices, surface charges, temperatures, and other physical parameters
of the spherical particles. Two discrete wavelengths (5µm and 1 mm)
of the incident radiation are considered. Optical properties of charged
particles composed of absorbing and slightly absorbing materials can
essentially differ. Especially, the resonance peaks typically occur
when imaginary part of particle refractive index is low. The relative
permeability of a material may differ from unity at large wavelengths,
e.g., in microwave region. Basically, the relative permeability appears
to be less important factor than the surface charge. However, the
permeability can influence the scattering and extinction efficiencies,
as well as the backscattering features of small particles, under some
conditions.

Received 27 July 2010, Accepted 19 September 2010, Scheduled 1 October 2010
Corresponding author: M. Kocifaj (kocifaj@savba.sk).
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1. INTRODUCTION

The scattering of electromagnetic waves by a spherical electrically
neutral particle/body was elaborated by Mie [1]. Much later Bohren
and Hunt [2] addressed the effect of surface charge on the optical
features of small homogeneous spherules. Just recently Klačka and
Kocifaj [3] partially improved the physics of this phenomena and
demonstrated the optical consequences on set of examples assuming
charged and electrically neutral (Mie) particles. Now, some extension
to the theory is suggested. Specifically, it deals with the motion of free
electrons on the surface of a spherical particle [4, 5]. We incorporate
the new suggestions into a general theory and present results of
numerical calculations for scattering on spherical particle with various
values of permeability. The classical and quantum physics approaches
are applied to the electromagnetic scattering problem showing the
important differences.

2. FUNDAMENTAL EQUATIONS FOR THE MODEL

Fundamental equations are represented by Maxwell equations, material
relations and boundary conditions.

2.1. Material Relations in Uniform Isotropic Media

In the following the subscript 1 refers to a spherical particle, and, the
subscript 2 is reserved for the medium surrounding the particle.

For both media (the particle and its surrounding) we can write:

~Dk = εk
~Ek,

~Bk = µk
~Hk,

~jk = σk
~Ek, k = 1, 2,

(1)

where ε1, ε2 are electric permittivities, and µ1, µ2 are magnetic
permeabilities. The third pair of the relations corresponds to
differential form of the Ohm’s law (σ1 and σ2 are conductivities of
the materials). Moreover,

~K = σs
~Etangential, (2)

where ~K is the surface current density and σs is the surface
conductivity.
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2.2. Maxwell Equations

Maxwell equations form a fundamental basis to solution of the
electromagnetic scattering by a homogeneous isotropic medium. Using
Eq. (1), we immediately obtain the relevant set of equations:

∇ · ~Ek = ρk/εk,

∇ · ~Hk = 0,

∇× ~Ek + µk
∂ ~Hk

∂t
= 0,

∇× ~Hk = σk
~Ek + εk

∂ ~Ek

∂t
,

∂ρk

∂t
+ σk∇ · ~Ek = 0, k = 1, 2,

(3)

where the last one is the continuity equation. The first of Eq. (3) and
the continuity equation guarantee that no free volume charge exists in
the media, i.e., ρk = 0.

2.3. Fundamental Boundary Conditions for the Model

Let us consider a sphere in a vacuum, ε2 = ε0, µ2 = µ0, σ2 = 0.
According to Mishchenko et al. [6] ~K = 0 for media with finite
conductivity. However, if the skin depth D =

√
2/(ωµ1σ1) [16] is

much smaller than the particle radius (ω is an angular frequency),
the surface current ~K has to be taken into account in the boundary
conditions. On the basis of Eqs.(1)–(3), we can write:

(
ε0

~E2 − ε?
1
~E1

)
· ~n = η0 − i

ω
∇s · ~K,

(
µ0

~H2 − µ1
~H1

)
· ~n = 0,

~n×
(

~E2 − ~E1

)
= 0,

~n×
(

~H2 − ~H1

)
= ~K,

(4)

where ε?
1 = ε1 + iσ1/ω, η0 = Q/(4πR2) for the spherical particle of

radius R and the net surface charge Q, and, ∇s · ~K = {∂Kϕ/∂ϕ +
∂(Kϑ sinϑ)/∂ϑ}/(R sinϑ) in spherical polar coordinates, (ϑ and ϕ are
polar and azimuthal angles) (consult also Eqs. (15), (16) in [17]).
Further, η = Re{η̃ exp(−iωt)}, where η is surface charge density,
η ≡ η(~r, t), and

∫
η̃dA = 0, η̃ ≡ η̃(~r). The time dependency of the

incident radiation fields (electric and magnetic) is exp(−iωt). The
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transition from general form of boundary conditions (Eq. (4)) to the
conventional Mie’s formulation is given by η0 = 0, η ≡ 0, ~K ≡ 0.

3. SCATTERING COEFFICIENTS

To characterize the optical behavior of a scattering particle, the far-
field zone formalism is traditionally considered [7]. In the far-field
region the electric field vector is perpendicular to the direction of
propagation, and, transversal components of the electric and magnetic
fields approach zero as 1/r, where r is the distance from the particle.
At the particle surface the tangential components of the total electric
field are continuous ( ~E2 is the sum of the incident and scattered fields
and ~E1 is the internal field). Application of boundary conditions
represented by Eq. (4) to the electric and magnetic fields finally yields
for the scattering coefficients an and bn (see [3]):

an =
ψ′n (mx)

[
ψn(x)

µ0
− iωσsψ′n(x)

k

]
− ψn (mx) mψ′n(x)

µ1

ψ′n (mx)
[

ξn(x)
µ0

− iωσsξ′n(x)
k

]
− ψn (mx) mξ′n(x)

µ1

,

bn =
ψn (mx)

[
ψ′n(x)

µ0
+ iωσsψn(x)

k

]
− ψ′n (mx) mψn(x)

µ1

ψn (mx)
[

ξ′n(x)
µ0

+ iωσsξn(x)
k

]
− ψ′n (mx) mξn(x)

µ1

,

ψn(%) = %jn(%), ξn(%) = %h(1)
n (%),

(5)

where x = kR, mx = KR, K = ω
√

µ1ε?
1 and the prime denotes

differentiation with respect to the argument of the special function.
The jn(%) and h

(1)
n (ρ) are spherical Bessel and Hankel functions of the

first kind, respectively [18]. In Eq. (5) k = ω/c is the wavenumber, c
is the speed of light in vacuum, and ε?

1 = ε1 + iσ1/ω.
The amount of radiative energy that is removed or scattered by

the particle is traditionally related to its projection area, which is
πR2 for ideal sphere. Following the above concept, the cross sections
for extinction and scattering, Cext and Csca, respectively, can be
determined as series expansions in the scattering coefficients:

Cext =
2π

k2

∞∑

n=1

(2n + 1) Re {an + bn} ,

Csca =
2π

k2

∞∑

n=1

(2n + 1) Re
{|an|2 + |bn|2

}
.

(6)

These formulae hold for the case η0 = 0. The general case
η0 6= 0, η 6= 0 can be obtained by a superposition of the stationary
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fields generated by the stationary charge η0 and by the changing charge
η.

Another important quantity characterizing the force that
electromagnetic radiation exerts on a spherical particle is the radiation
pressure [8]. The dimensionless efficiency factor for radiation pressure
is

Qpr = Qext −Qsca〈cos θ〉, (7)

where

Qext ≡ Cext

πR2
=

2
x2

∞∑

n=1

(2n + 1)Re (an + bn) ,

Qsca〈cos θ〉 =
4
x2

∞∑

n=1

{
n (n + 2)

n + 1
Re

(
ana?

n+1 + bnb?
n+1

)

+
2n + 1

n (n + 1)
Re (anb?

n)
}

(8)

and coefficients an and bn can be determined numerically, applying the
following concept

an =
A1nψn (x)−A2nψn−1 (x)
A1nξn (x)−A2nξn−1 (x)

,

A1n ≡
(
1 +

ng

x

)
Dn (mx) +

mn

x

µ0

µ1
,

A2n ≡ m
µ0

µ1
+ gDn (mx) ,

bn =
B1nψn (x)− ψn−1 (x)
B1nξn (x)− ξn−1 (x)

,

B1n ≡ m
µ0

µ1
Dn (mx) +

n

x
− g,

Dn (mx) ≡ ψ′n (mx)
ψn (mx)

=
ψn−1 (mx)
ψn (mx)

− n

mx
,

g ≡ iωk−1µ0σs.

(9)

Eq. (9) represents a generalization of Eq. (26) given by Klačka and
Kocifaj [3]. Eq. (9) reduces to Eq. (26) given in [3] for the special case
µ1 = µ0 (used also by Rosenkrantz and Arnon [9]). The conventional
formulae for the Mie theory for electrically neutral particles follows
from Eq. (9) by setting g = 0, i.e., when A1n = Dn(mx) +
(mn/x)µ0/µ1, A2n = mµ0/µ1, B1n = m(µ0/µ1)Dn(mx)+n/x. These
relations can be even more simplified if one assumes that the particle
is nonmagnetic, i. e., µ1 = µ0.
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4. CONDUCTIVITY AND MOTION OF FREE SURFACE
CHARGES

We will use the conventional approach determining the motion of
electrons. The idea goes back to Paul Drude, and it is known as
a classical phenomenological model for the conductivity, for the 3-
dimensional case (see, e.g., [10], p. 93 and 95; [11], p. 88).

4.1. 3-D Case: Volume Charges

A free electrically charged particle of a mass m and electric charge q
is decelerated by some sort of friction force

m

(
d~v

dt
+

~v

τ

)
= Re

(
q ~E0e

−iωt
)

, (10)

where τ is a coefficient describing the damping (attenuation rate is
τ−1). The relaxation time τ takes into account all internal losses in a
lumped parameter. Eq. (10) and the equilibrium ansatz ~v = ~v0e

−iωt

yield

~v0 =
q ~E0τ

m

1
1− iωτ

. (11)

The frequency dependent conductivity σ of a metal can be determined
using Ohm’s law in its differential form, ~j = σ ~E = Nq~v, where ~j is the
current density and N is the concentration/density of moving charges
(see also Eq. (44) in [19]). Based on Eq. (11), we have

σ(ω) =
Nq2

m

τ

1− iωτ
= ε0ωp

ωpτ

1− iωτ
,

ω2
p ≡

Nq2

mε0
,

(12)

where ωp is the plasma frequency.
Inserting Eq. (12) into formula for ε?

1 (introduced below Eq. (4))
we obtain expression formally consistent with Eq. (8) in [15].

4.2. 2-D Case: Surface Charges

Let us assume that the surface charges are free to move anywhere on
the surface, i.e, the charges are not localized around a particular point.
In this case we can also use Eq. (10), but ~E0 has to be substituted by
the tangential electric field ~Etangential:

m

(
d~vs

dt
+

~vs

τs

)
= Re

(
q ~Etangentiale

−iωt
)

. (13)
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Using an analogy with the equilibrium result represented by Eq. (12),
we can write surface conductivity as a solution of Eq. (13):

σs(ω) =
Nsq

2

m

1
γs − iω

=
Nsq

2

m

γs + iω

γ2
s + ω2

,

γs ≡ τ−1
s .

(14)

The Ohm’s law for the surface current was applied, ~js =
σs

~Etangential = Nsq~vs, where ~js is the surface current density and
Ns is the mean number of charged particles per unit area (surface
concentration).

Another form of the surface conductivity can be also obtained,
following the analogy between 3-D and 2-D cases. Incorporation of
Pillai’s approach ([4], p. 696: Eq. (12.8)) results in

σs(ω) =
Nsq

2

m

γs

ω

ω − iγs

γ2
s + ω2

. (15)

Finally, the analogy between 3-D and 2-D cases based on quantum
approach ([10], p. 106) leads to the result

σs(ω) =
Nsq

2

m

γs − iω

γ2
s + ω2

. (16)

4.3. Physical Discussion

We have obtained three different results, specifically Eqs. (14)–(16).
All of them fulfill

σ?
s(ω) = σs(−ω), (17)

where the star denotes complex conjugation.

4.3.1. Classical Physics

Equation (15) can be derived in a way similar to that in Sec. 5.1.
However, one important difference from Pillai’s approach ([4], p. 696)
is that ~j = nq~v, while Pillai suggests ~j = nq~r/τ (n is concentration of
electrons and ~r is electron displacement from equilibrium position).
Physical approach should correspond to the method presented in
Sec. 5.1. This is evident also from the fact that the result given by
Eq. (14) fulfills the relations

σs(ω) ≡ σs1(ω) + iσs2(ω),

σs2(ω) = − 1
π

∫ +∞

−∞

σs1 (Ω)
Ω− ω

dΩ,

σs1(ω) = +
1
π

∫ +∞

−∞

σs2 (Ω)
Ω− ω

dΩ.

(18)
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The result given by Eq. (15) does not fulfill Eq. (18). Eq. (18)
corresponds to Hilbert’s transform (see, e.g., [12], p. 227–228). In
physics, Eq. (18) is also known as the Kramers and Kronig relations.
We remind that the integrals in Eq. (18) are in the sense of principal
values (Cauchy’s principal integrals, valeur principal):

∫ +∞
−∞ u(x)/(x−

t)dx = limδ→0

∫
|t−x|>δ u(x)/(x− t)dx.

Since Nsq = η0 + η, Eq. (14) can be rewritten to the form

σs(ω) =
(η0 + η) q

m

γs + iω

γ2
s + ω2

. (19)

4.3.2. Quantum Physics

In quantum approach we have σs(ω) given by Eq. (16). The relations
analogous to Eq. (18) are also fulfilled, but now the correct form is

σs(ω) ≡ σs1(ω) + iσs2(ω),

σs2(ω) = +
1
π

∫ +∞

−∞

σs1 (Ω)
Ω− ω

dΩ,

σs1(ω) = − 1
π

∫ +∞

−∞

σs2 (Ω)
Ω− ω

dΩ.

(20)

The quantum approach requires integration in lower part of the
complex plane. Again, the integrals in Eq. (20) should be interpreted
as the meaning of Cauchy’s principal integrals, again.

Accepting that Nsq = η0 + η, Eq. (16) can be rewritten to the
form

σs(ω) =
(η0 + η) q

m

γs − iω

γ2
s + ω2

. (21)

5. G-PARAMETER

For the purpose of Eq. (9), we need to calculate the g-parameter:

g ≡ iωk−1µ0σs. (22)

5.1. Classical Physics

Equations (19) and (22) yield

g = iωk−1µ0
(η0 + η) q

m

γs + iω

γ2
s + ω2

= −ωk−1µ0
(η0 + η) e

me

ω − iγs

ω2 + γ2
s

. (23)

The last expression can be formulated in terms of an electrostatic
potential Φ at the surface of a uniformly charged sphere of radius
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R. Since Φ = Q/(4πε0R) and the total uniformly distributed charge
Q ≈ η0 × 4πR2, Eq. (23) results in

g ≈ eΦ
mec2

1
x
× −1 + iγs/ω

1 + (γs/ω)2
, (24)

where x ≡ kR, and the well-known relations were used: ωk−1 = c, c =
1/
√

ε0µ0.

5.2. Quantum Physics

Equations. (21) and (22) yield

g = iωk−1µ0
(η0 + η) q

m

γs − iω

γ2
s + ω2

= +ωk−1µ0
(η0 + η) e

me

ω + iγs

ω2 + γ2
s

. (25)

Equation analogous to Eq. (24) is

g ≈ eΦ
mec2

1
x
× +1 + iγs/ω

1 + (γs/ω)2
, (26)

where x ≡ kR.

5.3. Discussion on g-Parameter

We have obtained two values of the g-parameter. The first one is based
on the classical physics approach with the final formula Eq. (24). The
second one follows quantum physics approach resulting in Eq. (26).
The difference is evident: real parts of g differ in signs.

6. γs-PARAMETER

The relevant results are given by Eqs. (7)–(9) and Eq. (24) or Eq. (26).
The only unknown quantity is γs.

Klačka and Kocifaj ([3], Eq. (26)) yield

g =
x

2
ω2

s

ω2 + γ2
s

(
−1 + i

γs

ω

)
,

ω2
s = 2

e

me

Φ
R2

,

γs ≈ kBT/~,

(27)

where ωs is the surface plasma frequency, Φ — electrostatic potential at
the surface of a uniformly charged sphere of radius R, T is temperature
of the particle, e = 1.602×10−19 C, me = 9.109×10−31 kg, kB = 1.38×
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10−23 JK−1 is the Boltzmann’s constant, and ~ = 1.0546× 10−34 Js is
Planck’s constant (divided by the factor 2π).

Equation (27) contains classical result represented by Eq. (24), but
fully ignore the result of quantum physics (consult Eq. (26)). However,
the value of γs in Eq. (27) is based on quantum physics.

6.1. Classical Approach to γs

Recently, Heifetz et al. [5] have presented a classical derivation of γs.
The authors have not been satisfied by the results given in Eq. (27)
since the damping constant γs does not relate to the properties of the
medium. The authors have introduced a classical-mechanics model
of the temperature-dependent damping constant γs(T ). They have
treated the electron as a classical spherical particle that has a classical
electron radius (Lorentz radius) of

re =
1

4πε0

e2

mec2
. (28)

Finally, the authors have used an idea of a linear viscous drag for a
particle in water, for the case of a water droplet. According to Stoke’s
law

m

τ
= 6πrη, (29)

if Eq. (10) is used. m/τ is the coefficient of resistive force, r is the
Stokes radius of the particle (radius of the spherical particle) and η is
the temperature-dependent fluid viscosity. Using equation analogous
to Eq. (29) for the 2-D case, Eqs. (28)–(29) yield

γs = 6πreη(T )/me. (30)

The classical electron radius has the numerical value 2.82 × 10−15 m.
At 20◦C the viscosity of water is η = 1.0003 × 10−3 Pa s. Thus,
γs = 5.83× 1013 rad/s.

6.2. Improved Classical Approach to γs

Let us consider that the electron is not a point particle, but a small
sphere. If the charge is distributed uniformly over a spherical surface
of radius ae, then the momentum ~p of the electromagnetic field of the
electron moving with velocity ~v is

~p =
2
3

1
4πε0

e2

aec2
~v, (31)
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see, e.g., [13] (p. 32–39). Eq. (31) states that the momentum of
the electromagnetic field is proportional to velocity. Thus, it is the
momentum of a particle with mass

mEM =
2
3

1
4πε0

e2

aec2
, (32)

which Feynman calls the “electromagnetic mass” ([13], p. 35). If all
the electron’s mass is electromagnetic, then mEM = me. Eq. (32)
enables us to determine the radius of the small spherical shell of charge
representing the electron:

ae =
2
3

1
4πε0

e2

mec2
=

2
3
re, (33)

if also Eq. (28) is used.
Inserting Eq. (33) into Eq. (29) one obtains

γs = 6πaeη(T )/me = 4πreη(T )/me, (34)
instead of Eq. (30).

6.3. Quantum Approach to γs

The γs is a quantity of the same dimension as the (angular) frequency.
In reality, its value should be obtained on the basis of a microscopic
quantum theory. It is awaited that γs depends on the fundamental
quantum constant ~, the Planck constant. Klačka and Kocifaj ([3]
Eq. (26)) used the formula

γs ≈ kBT/~, (35)
see also Eq. (27).

6.4. Comparison

Comparison of the results represented by Eq. (30) and Eq. (35) yields
for the case of the water droplet at 20◦C γs (classical)/γs (quantum) =
1.52. Relating Eq. (34) and Eq. (35) for the water droplet at 20◦C one
obtains γs (improved classical)/γs (quantum) = 1 + (4/3) × 10−2 ≈
1.01.

6.5. Discussion on γs-Parameter

In any case, we have to consider the above presented coinci-
dence (Sec. 6.4) between the numerical values of γs (classical),
γs (improved classical) and γs (quantum) as a pure chance. The quan-
tum mechanical approach given by Eq. (35) should be a relevant ap-
proximation to reality.
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There exists another argument that classical, non-quantum,
approach cannot yield results of the kind of Eq. (35). Note that the
case ω → 0 yields for conductivity σ = Ne2τ/m, τ = l/v, where l
is the mean free path. As for the classical physics, it was assumed
by Drude and Lorentz that l is independent of temperature and v =√

3kBT/m (see [4], p. 190). The classical physics is not in agreement
with experimental conclusions. The real situation can be described,
for metals (conductivity of isolants can be an increasing function of
temperature), by the relation τ−1 = τ−1

impurities + τ−1
e-e + τ−1

e-phonon + . . .

and τ−1
impurities ∝ T 0, the electron-electron interaction is described as

τ−1
e-e ∝ T 2, the electron-phonon interaction yields τ−1

e-phonon ∝ T 5 for low
temperatures T , and, τ−1

e-phonon ∝ T 1 for high temperatures T . Similar
situation can be awaited for the total γs. Thus, approximately, γs ∝
T for metals, conductors.

7. NUMERICAL RESULTS

The differences between classical and quantum physics approaches
are documented by set of targeted numerical experiments. For the
sake of brevity we introduce two dimensionless quantities: the relative
permeability µr and γs,factor, defined by the relations

µ1 ≡ µrµ0, (36)
γs ≡ γs,factorkBT/~, (37)

see also Eq. (35). The γs,factor may be treated as a dimensionless
quantity related to the properties of the spherical particle.

Particle optical properties determined by means of classical and
quantum physics are documented graphically. Various surface electric
potentials of the spherical particle are assumed. The electrically
neutral particle is characterized by the surface potential 0V. As it
is evident from Figs. 1–7, the optical response of the particle to the
incident electromagnetic field depends essentially on the wavelength
of the radiation, temperature of the particle, µr, refractive index, and
the value of x = 2πR/λ. Classical and quantum approaches yield
different results, in general. We remind that classical physics is given
by Eq. (24), while quantum physics by Eq. (26) and Eq. (37).

Figures 1 and 2 depict ratios of efficiency factors for extinction
for charged and neutral particles Qext(c)/Qext(0) ≡ Qext(c)/Qext. The
figures hold for almost identical situations except for the refractive
index. Small value of the imaginary part of the complex refractive
index leads to quite reduced absorption, thus implying different
behavior for classical and quantum approaches. This is apparent from
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black curves: classical physics approch

gray curves: quantum physics approach
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Figure 1. Ratio of extinction efficiency factors for charged and
neutral particles as a function of size parameter x = 2πR/λ. The
results are obtained for strongly absorbing particles with refractive
index m = 5.0 + 3.0i under the following conditions: λ = 5 µm,
µr = 1.0, T = 30 K, γs,factor = 0.1.
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Figure 2. Ratio of efficiency factors for extinction for charged and
neutral particles. The slightly absorbing particles with refractive index
m = 2.5 + 0.1i are considered. The further computational parameters
are as follows: λ = 5µm, µr = 1.0, T = 30 K, γs,factor = 0.1.
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Fig. 1. In the quantum physics approach the ratio of Qext(c)/Qext is a
smooth and monotonous function of size parameter x, as follows from
Figs. 1 and 2. In contrast, the classical approach applied to slightly
absorbing particles generates very sharp peaks of Qext(c)/Qext with
maxima about 100 or more (see Fig. 2).
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Figure 3. The same as in Fig. 1, but at wavelength λ = 1mm and
with µr = 4.0.
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Figure 4. Ratio of efficiency factors for scattering for charged and
neutral particles. The results for strongly absorbing particles with
refractive index m = 5.0+3.0i are obtained under the following setup:
λ = 1 mm, µr = 1.0, T = 30K, γs,factor = 0.1.
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Figure 3 also depicts the ratios of efficiency factors for extinction
for charged and neutral particles Qext(c)/Qext. The Figs. 1 and 3 differ
in the value of µr. Both of the figures confirm the general trend that
the maxima of the presented curves occur for higher values of x when
higher values of surface electric charges exist.

Figure 4 presents the ratios of efficiency factors for scattering
for charged and neutral particles Qsca(c)/Qsca(0) ≡ Qsca(c)/Qsca.
While the classical physics approach results in weak resonances, the
quantum physics approach suggests a quick balancing of the scattering
efficiencies of charged and neutral particles. The backscattering
features of Qbk(c)/Qbk are similar to those for scattering.

Figures 5 and 6 depict ratios of efficiency factors for radiation pres-
sure for charged and neutral particles Qpr(c)/Qpr(0) ≡ Qpr(c)/Qpr.
Absorption (related to the imaginary part of the refractive index) and
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Figure 5. Isolines represent the ratio of efficiency factors for radiation
pressure for charged and neutral particles. The strongly absorbing
particles with refractive index m = 5.0 + 3.0i at λ = 1 mm are
considered. The rest parameters are µr = 1.0, T = 30 K, but now
γs,factor = 1.0.
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classical physics approach:

quantum physics approach:
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Figure 6. Isolines represent the decadic logarithm of the ratio of
efficiency factors for radiation pressures Qpr(c)/Qpr(0). Here Qpr(c)
corresponds to the charged particles, while Qpr(0) is obtained from
convenient Mie theory for electrically neutral particles. The slightly
absorbing particles with refractive index m = 2.5 + 0.1i at λ = 5µm
are considered. The rest computational parameters are µr = 1.0, T =
30K, γs,factor = 0.1.

the values of γs,factor of the particles are different. Similarly to the
results presented in the previous figures, the slope of Qpr(c)/Qpr de-
termined under classical physics conditions is much steeper than in
the case of quantum physics approach (consult Figs. 5 and 6). The
resonance peaks exist only for classical approach when the slightly ab-
sorbing material is considered (Fig. 5).

Figure 7 depicts Qpr/Qext as a function of log x for various
combinations of optical parameters. The difference between charged
and neutral particles is small. Also the results for quantum and
classical physics approaches are almost identical (and thus not
separated in Fig. 7). The figure immediately implies 0 ≤ Qpr/Qext ≤
1.2, which is consistent with relativity theory 0 ≤ Qpr/Qext ≤ 2,
although Qpr may be greater than 2 [14].
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Figure 7. Efficiency factor for radiation pressure to efficiency factor
for extinction as a function of the size parameter x = 2πR/λ.

8. CONCLUSION

The Mie’s solution of the Maxwell’s equations is generalized to an
interaction of an incident electromagnetic radiation with electrically
charged sphere. The paper presents relevant equations for calculating
optical properties of the charged spherical particles (Eqs. (6)–(9)). The
classical physics (Eq. (24)) as well as the quantum physics (Eqs. (26)
and (37)) approaches are treated and documented in set of numerical
simulations. The targeted computations were made for charged
spherical particles with various values of permeability, refractive index,
wavelength of the incident radiation, surface charge, temperature, and
other physical parameters. It is shown that classical and quantum
physics approaches may provide different results, especially when
the particles are composed of slightly absorbing materials. An
inconsistency of both approaches is most important for scattering and
backscattering features. While the classical approach may generate
very sharp resonance peaks, the size-dependent optical properties (like
efficiency factors for scattering, extinction and radiation pressure) show
quite smooth and rather monotonous behavior in the case of quantum
physics approach. Increasing the wavelength, the surface resonances
continuously disappear. As the particle size becomes several orders of
magnitude smaller than the wavelength of the incident radiation, the
charged particle tends to remove much less electromagnetic energy than
that of Mie’s (neutral) particle, i.e., Qext (charged)/Qext (neutral) ¿
1. This is generally related to a reduced absorption efficiency. As
shown in Fig. 7, the presence of absorbing materials in a particle may



34 Klačka and Kocifaj

result either in removal of ripple resonance structure, or in a shift of
the resonance maxima (or both of these things are the case).

Our results show that classical and quantum physics approaches
are consistent in the long wave region, but relevant differences
exist in the intermediate spectral region. The found discrepancy
between classical and quantum approaches is a sufficient motivation
for experimentalists to verify if what is theoretically derived is
the same as what is measured in laboratory. Materials with
enhanced conductivities can be used in experiments to identify the
approach, classical or quantum, which provides results consistent with
measurements.

Heifetz et al. [5] have performed set of experiments on millimeter-
wave scattering from neutral and charged water droplets. The
measurements confirmed an increased scattering efficiency for droplets
smaller than 100 nm, which is consistent with our theoretical findings.
Heifetz and his team also outlined some potential applications in
remote sensing of radioactive gases that are emitted as byproducts
of nuclear fuel cycle reactions.

ACKNOWLEDGMENT

J.K. was partially supported by the Scientific Grant Agency VEGA,
grant No. 2/0016/09.

REFERENCES

1. Mie, G., “Beitra̋ge zur optik trűber medien speziell kolloidaler
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