Vol. 108
Latest Volume
All Volumes
PIER 180 [2024] PIER 179 [2024] PIER 178 [2023] PIER 177 [2023] PIER 176 [2023] PIER 175 [2022] PIER 174 [2022] PIER 173 [2022] PIER 172 [2021] PIER 171 [2021] PIER 170 [2021] PIER 169 [2020] PIER 168 [2020] PIER 167 [2020] PIER 166 [2019] PIER 165 [2019] PIER 164 [2019] PIER 163 [2018] PIER 162 [2018] PIER 161 [2018] PIER 160 [2017] PIER 159 [2017] PIER 158 [2017] PIER 157 [2016] PIER 156 [2016] PIER 155 [2016] PIER 154 [2015] PIER 153 [2015] PIER 152 [2015] PIER 151 [2015] PIER 150 [2015] PIER 149 [2014] PIER 148 [2014] PIER 147 [2014] PIER 146 [2014] PIER 145 [2014] PIER 144 [2014] PIER 143 [2013] PIER 142 [2013] PIER 141 [2013] PIER 140 [2013] PIER 139 [2013] PIER 138 [2013] PIER 137 [2013] PIER 136 [2013] PIER 135 [2013] PIER 134 [2013] PIER 133 [2013] PIER 132 [2012] PIER 131 [2012] PIER 130 [2012] PIER 129 [2012] PIER 128 [2012] PIER 127 [2012] PIER 126 [2012] PIER 125 [2012] PIER 124 [2012] PIER 123 [2012] PIER 122 [2012] PIER 121 [2011] PIER 120 [2011] PIER 119 [2011] PIER 118 [2011] PIER 117 [2011] PIER 116 [2011] PIER 115 [2011] PIER 114 [2011] PIER 113 [2011] PIER 112 [2011] PIER 111 [2011] PIER 110 [2010] PIER 109 [2010] PIER 108 [2010] PIER 107 [2010] PIER 106 [2010] PIER 105 [2010] PIER 104 [2010] PIER 103 [2010] PIER 102 [2010] PIER 101 [2010] PIER 100 [2010] PIER 99 [2009] PIER 98 [2009] PIER 97 [2009] PIER 96 [2009] PIER 95 [2009] PIER 94 [2009] PIER 93 [2009] PIER 92 [2009] PIER 91 [2009] PIER 90 [2009] PIER 89 [2009] PIER 88 [2008] PIER 87 [2008] PIER 86 [2008] PIER 85 [2008] PIER 84 [2008] PIER 83 [2008] PIER 82 [2008] PIER 81 [2008] PIER 80 [2008] PIER 79 [2008] PIER 78 [2008] PIER 77 [2007] PIER 76 [2007] PIER 75 [2007] PIER 74 [2007] PIER 73 [2007] PIER 72 [2007] PIER 71 [2007] PIER 70 [2007] PIER 69 [2007] PIER 68 [2007] PIER 67 [2007] PIER 66 [2006] PIER 65 [2006] PIER 64 [2006] PIER 63 [2006] PIER 62 [2006] PIER 61 [2006] PIER 60 [2006] PIER 59 [2006] PIER 58 [2006] PIER 57 [2006] PIER 56 [2006] PIER 55 [2005] PIER 54 [2005] PIER 53 [2005] PIER 52 [2005] PIER 51 [2005] PIER 50 [2005] PIER 49 [2004] PIER 48 [2004] PIER 47 [2004] PIER 46 [2004] PIER 45 [2004] PIER 44 [2004] PIER 43 [2003] PIER 42 [2003] PIER 41 [2003] PIER 40 [2003] PIER 39 [2003] PIER 38 [2002] PIER 37 [2002] PIER 36 [2002] PIER 35 [2002] PIER 34 [2001] PIER 33 [2001] PIER 32 [2001] PIER 31 [2001] PIER 30 [2001] PIER 29 [2000] PIER 28 [2000] PIER 27 [2000] PIER 26 [2000] PIER 25 [2000] PIER 24 [1999] PIER 23 [1999] PIER 22 [1999] PIER 21 [1999] PIER 20 [1998] PIER 19 [1998] PIER 18 [1998] PIER 17 [1997] PIER 16 [1997] PIER 15 [1997] PIER 14 [1996] PIER 13 [1996] PIER 12 [1996] PIER 11 [1995] PIER 10 [1995] PIER 09 [1994] PIER 08 [1994] PIER 07 [1993] PIER 06 [1992] PIER 05 [1991] PIER 04 [1991] PIER 03 [1990] PIER 02 [1990] PIER 01 [1989]
2010-09-17
Analysis of Microwave Emission of Exponentially Correlated Rough Soil Surfaces from 1.4 GHz to 36.5 GHz
By
Progress In Electromagnetics Research, Vol. 108, 205-219, 2010
Abstract
We analyzed the microwave emission from a rough soil surface with exponential correlation by characterizing its dependences of polarization, look angle, and frequency. Using the same set of physical surface parameters of rms height and correlation lengths, results are obtained for a wide range of frequencies at 1.4 GHz, 5 GHz, 10 GHz, 18 GHz, and 36.5 GHz. Accurate simulations for the 2-D scattering problem are conducted by Galerkin's method with the rooftop basis function, followed by near-field integration, fine discretization, and cubic spline interpolation of surfaces. The multilevel UV method was employed to accelerate the solution. Accuracy is ensured by energy conservation check. Simulation results are compared with SPM, KA and AIEM. Results suggest that there exists distinct emission characteristic between the exponential and the Gaussian correlated surface. These charcateristics should be very useful in developing retrieval algorithm of the soil moisture from emissivity measurements.
Citation
Peng Xu, Kunshan Chen, and Leung Tsang, "Analysis of Microwave Emission of Exponentially Correlated Rough Soil Surfaces from 1.4 GHz to 36.5 GHz ," Progress In Electromagnetics Research, Vol. 108, 205-219, 2010.
doi:10.2528/PIER10072703
References

1. Wang, J. R. and B. J. Choudhury, "Remote sensing of soil moisture content over bare fields at 1.4 GHz frequency," J. Geophys. Res., Vol. 86, 5277-5282, 1981.
doi:10.1029/JC086iC06p05277

2. Tsang, L. and R. W. Newton, "Microwave emissions from soils with rough surfaces," J. Geophy. Res., Vol. 87, No. 11, 9017-9024, 1982.
doi:10.1029/JC087iC11p09017

3. Wang, J. R., P. E. O'Neill, T. J. Jackson, and E. T. Engman, "Multi-frequency measurements of the effects of soil moisture, soil texture and surface roughness," IEEE Transactions on Geoscience and Remote Sensing, Vol. 21, 44-51, 1983.
doi:10.1109/TGRS.1983.350529

4. Tsang, L., J. A. Kong, and R. T. Shin, Theory of Microwave Remote Sensing, John Wiley & Sons, 1985.

5. Ulaby, F. T., R. K. Moore, and A. K. Fung, Microwave Remote Sensing, Vol. 2, No. 3, Artech House, 1986.

6. Paloscia, S. and P. Pampaloni, "Microwave polarization index for monitoring vegetation growth," IEEE Transactions on Geoscience and Remote Sensing, Vol. 26, No. 5, 617-621, 1988.
doi:10.1109/36.7687

7. Pampaloni, P. (ed.), Microwave Radiometry and Remote Sensing Applications, Brill Academic, Leiden, 1989.

8. Paloscia, S., P. Pampaloni, L. Chiarantini, P. Coppo, S. Gagliani, and G. Luzi, "Multifrequency passive microwave remote sensing of soil moisture and roughness," Int. J. Remote Sensing, Vol. 14, No. 3, 467-483, 1993.
doi:10.1080/01431169308904351

9. Shi, J. C., J. Wang, A. Y. Hsu, P. E. O'Neill, and E. T. Engman, "Estimation of bare surface soil moisture and surface roughness parameter using L-band SAR image data," IEEE Transactions on Geoscience and Remote Sensing, Vol. 35, 1254-1266, Sep. 1997.

10. Njoku, E. G. and L. Li, "Retrieval of land surface parameters using passive microwave sensing at 6{18 GHz," IEEE Transactions on Geoscience and Remote Sensing, Vol. 37, No. 1, 79-93, 1999.
doi:10.1109/36.739125

11. Shi, J., K. S. Chen, Q. Li, T. J. Jackson, P. E. O'Neill, and L. Tsang, "A parameterized surface reflectivity model and estimation of bare-surface soil moisture with L-band radiometer," IEEE Transactions on Geoscience and Remote Sensing, Vol. 40, No. 12, 2674-2686, 2002.
doi:10.1109/TGRS.2002.807003

12. Shi, J. C., L. M. Jiang, L. X. Zhang, K. S. Chen, J.-P. Wigneron, and A. Chanzy, "A parameterized multifrequency-polarization surface emission model," IEEE Transactions on Geoscience and Remote Sensing, Vol. 43, No. 12, 2831-2841, 2005.
doi:10.1109/TGRS.2005.857902

13. Fung, A. K., Microwave Scattering and Emission Models and their Applications, Artech House, 1992.

14. Chen, K. S., T. D. Wu, and J. C. Shi, "A model-based inversion of rough surface parameters from radar measurements," Journal of Electromagnetic Waves and Applications, Vol. 15, No. 2, 173-200, 2001.
doi:10.1163/156939301X01336

15. Li, Q., J. C. Shi, and K. S. Chen, "A generalized power law spectrum and its applications to the backscattering of soil surfaces based on the integral equation model," IEEE Transactions on Geoscience and Remote Sensing, Vol. 40, No. 2, 271-281, 2002.
doi:10.1109/36.992784

16. Chen, K. S., T. D.Wu, L. Tsang, Q. Li, and J. C. Shi, "Emission of rough surfaces calculated by the integral equation method with a comparison to a three-dimensional moment method simulations," IEEE Transactions on Geoscience and Remote Sensing, Vol. 41, No. 1, 90-101, 2002.
doi:10.1109/TGRS.2002.807587

17. Chen, K. S., A. K. Fung, J. C. Shi, and H.-W. Lee, "Intepretation of backscattering mechanism from non-gaussian correlated randomly rough surfaces," Journal of Electromagnetic Waves and Applications, Vol. 20, No. 1, 2233-2246, 2006.

18. Xu, P. and L. Tsang, "Bistatic scattering and emissivities of lossy dielectric surfaces with exponential correlation functions," IEEE Transactions on Geoscience and Remote Sensing, Vol. 45, No. 1, 62-72, 2007.
doi:10.1109/TGRS.2006.883458

19. Fung, A. K. and K. S. Chen, Microwace Scattering and Emission Models for Users, Artech House, 2010.

20. Mattia, F., T. Le Toan, J. Souyris, G. Carolis, N. Floury, F. Posa, and G. Pasquariello, "The effect of surface roughness on multifrequency polarimetric SAR data," IEEE Transactions on Geoscience and Remote Sensing, Vol. 35, No. 4, 954-966, Jul. 1997.
doi:10.1109/36.602537

21. Davidson, M. W. J., T. Le Toan, F. Mattia, C. Satalino, T. Manninen, and M. Borgeaud, "On the characterization of agricultural soil roughness for radar remote sensing studies," IEEE Transactions on Geoscience and Remote Sensing, Vol. 38, No. 2, 630-640, Mar. 2000.
doi:10.1109/36.841993

22. Tsang, L., J. A. Kong, and K. H. Ding, Scattering of Electromagnetic Waves: Theories and Applications, Wiley, New York, 2000.
doi:10.1002/0471224286

23. Tsang, L., D. Chen, P. Xu, Q. Li, and V. Jandhyala, "Wave scattering with the UV multilevel partitioning method: 1. Two-dimensional problem of perfect electric conductor surface scattering," Radio Sci., Vol. 39, No. 5, 2004.

24. Xu, P. and L. Tsang, "Scattering by rough surface using a hybrid technique combining the multilevel UV method with the sparse matrix canonical grid method," Radio Sci., Vol. 40, No. 4, 2005.
doi:10.1029/2005RS003242

25. Hallikainen, M. T., F. T. Ulaby, M. C. Dobson, M. A. El-Rayes, and L. K. Wu, "Microwave dielectric behavior of wet soil --- Part I: Empirical models and experimental observations," IEEE Transactions on Geoscience and Remote Sensing, Vol. 23, No. 1, 25-34, 1985.
doi:10.1109/TGRS.1985.289497

26. Gu, X., L. Tsang, H. Braunisch, and P. Xu, "Modeling absorption of rough interface between dielectric and conductive medium," Microw. Opt. Technol. Lett., Vol. 49, No. 1, 7-13, 2007.
doi:10.1002/mop.22023