Vol. 17
Latest Volume
All Volumes
PIERL 123 [2025] PIERL 122 [2024] PIERL 121 [2024] PIERL 120 [2024] PIERL 119 [2024] PIERL 118 [2024] PIERL 117 [2024] PIERL 116 [2024] PIERL 115 [2024] PIERL 114 [2023] PIERL 113 [2023] PIERL 112 [2023] PIERL 111 [2023] PIERL 110 [2023] PIERL 109 [2023] PIERL 108 [2023] PIERL 107 [2022] PIERL 106 [2022] PIERL 105 [2022] PIERL 104 [2022] PIERL 103 [2022] PIERL 102 [2022] PIERL 101 [2021] PIERL 100 [2021] PIERL 99 [2021] PIERL 98 [2021] PIERL 97 [2021] PIERL 96 [2021] PIERL 95 [2021] PIERL 94 [2020] PIERL 93 [2020] PIERL 92 [2020] PIERL 91 [2020] PIERL 90 [2020] PIERL 89 [2020] PIERL 88 [2020] PIERL 87 [2019] PIERL 86 [2019] PIERL 85 [2019] PIERL 84 [2019] PIERL 83 [2019] PIERL 82 [2019] PIERL 81 [2019] PIERL 80 [2018] PIERL 79 [2018] PIERL 78 [2018] PIERL 77 [2018] PIERL 76 [2018] PIERL 75 [2018] PIERL 74 [2018] PIERL 73 [2018] PIERL 72 [2018] PIERL 71 [2017] PIERL 70 [2017] PIERL 69 [2017] PIERL 68 [2017] PIERL 67 [2017] PIERL 66 [2017] PIERL 65 [2017] PIERL 64 [2016] PIERL 63 [2016] PIERL 62 [2016] PIERL 61 [2016] PIERL 60 [2016] PIERL 59 [2016] PIERL 58 [2016] PIERL 57 [2015] PIERL 56 [2015] PIERL 55 [2015] PIERL 54 [2015] PIERL 53 [2015] PIERL 52 [2015] PIERL 51 [2015] PIERL 50 [2014] PIERL 49 [2014] PIERL 48 [2014] PIERL 47 [2014] PIERL 46 [2014] PIERL 45 [2014] PIERL 44 [2014] PIERL 43 [2013] PIERL 42 [2013] PIERL 41 [2013] PIERL 40 [2013] PIERL 39 [2013] PIERL 38 [2013] PIERL 37 [2013] PIERL 36 [2013] PIERL 35 [2012] PIERL 34 [2012] PIERL 33 [2012] PIERL 32 [2012] PIERL 31 [2012] PIERL 30 [2012] PIERL 29 [2012] PIERL 28 [2012] PIERL 27 [2011] PIERL 26 [2011] PIERL 25 [2011] PIERL 24 [2011] PIERL 23 [2011] PIERL 22 [2011] PIERL 21 [2011] PIERL 20 [2011] PIERL 19 [2010] PIERL 18 [2010] PIERL 17 [2010] PIERL 16 [2010] PIERL 15 [2010] PIERL 14 [2010] PIERL 13 [2010] PIERL 12 [2009] PIERL 11 [2009] PIERL 10 [2009] PIERL 9 [2009] PIERL 8 [2009] PIERL 7 [2009] PIERL 6 [2009] PIERL 5 [2008] PIERL 4 [2008] PIERL 3 [2008] PIERL 2 [2008] PIERL 1 [2008]
2010-09-14
A 9-21 GHz Miniature Monolithic Image Reject Mixer in 0.18-μm CMOS Technology
By
Progress In Electromagnetics Research Letters, Vol. 17, 105-114, 2010
Abstract
A compact 9-21 GHz monolithic image reject mixer (IRM) with a chip dimension of 0.9×0.74 mm2 has been designed and fabricated using a standard 0.18 μm CMOS technology. The compact configuration is composed of a 90°coupler for local oscillator (LO) and two doubly balanced ring mixers for mixing core. Particularly, a radio frequency (RF) dual balun with advanced intermediate frequency (IF) extraction technique can not only eliminate the use of power divider in IRM design, and simultaneously provide balanced signals for ring mixing, but also obtain high side band suppression without any additional IF low-pass filter. Moreover, the entire passive circuits are constructed by utilizing broad side coupling structure to achieve high-level integration further. From the measured results, the IRM exhibits a 19.4-22.4 dB conversion loss, a maximum image rejection ratio (IRR) of 34 dB, all port-to-port isolations better than 28 dB over RF frequency range of 9 to 21 GHz, and an input 1 dB compression power of 14 dBm.
Citation
Wei-Chih Chien, Chih-Ming Lin, Yung-Hsiang Chang, and Yeong-Her Wang, "A 9-21 GHz Miniature Monolithic Image Reject Mixer in 0.18-μm CMOS Technology," Progress In Electromagnetics Research Letters, Vol. 17, 105-114, 2010.
doi:10.2528/PIERL10072602
References

1. Macedo, J. A. and M. A. Copeland, "A 1.9-GHz silicon receiver with monolithic image filtering," IEEE J. Solid-State Circuits, Vol. 33, 378-386, Mar. 1998.
doi:10.1109/4.661203

2. Reynolds, S. K., B. A. Floyd, U. R. Pfei®er, T. Beukema, J. Grzyb, C. Haymes, B. Gaucher, and M. Soyuer, "A silicon 60-GHz receiver and transmitter chipset for broadband communications," IEEE J. Solid-State Circuits, Vol. 41, No. 12, 2820-2831, Dec. 2006.
doi:10.1109/JSSC.2006.884820

3. Phan, A. T., C. W. Kim, C. Y. Cha, M. S. Kang, S. G. Lee, C. D. Su, and H. T. Kim, "A low noise image rejection down CMOS mixer," MWSCAS, Vol. 3, 327-330, Jul. 2004.

4. Razavi, B., RF Microelectronics, Prentice-Hall, 1998.

5. Singhal, P. K., S. Basu, and Y.-H. Wang, "Integrated compact broad Ka-band sub-harmonic single sideband up-converter MMIC," Progress In Electromagnetics Research C, Vol. 8, 179-194, 2009.
doi:10.2528/PIERC09060807

6. Gunnarsson, S. E., D. Kuylenstierna, and H. Zirath, "Analysis and design of millimeter-wave FET-based image reject mixers," IEEE Trans. Microw. Theory Tech., Vol. 55, No. 10, 2065-2074, Oct. 2007.
doi:10.1109/TMTT.2007.905480

7. Chiou, H.-K., W.-R. Lian, and T.-Y. Yang, "A miniature Q-band balanced sub-harmonically pumped image rejection mixer," IEEE Microw. Wireless Compon. Lett., Vol. 17, No. 6, 463-465, Jun. 2007.
doi:10.1109/LMWC.2007.897849

8. Gavell, M., M. Ferndahl, S. E. Gunnarsson, M. Abbasi, and H. Zirath, "An image reject mixer for high-speed E-band (71--76, 81--86 GHz) wireless communication," Proc. IEEE CSIC Symp. Dig., 1-4, Oct. 2009.

9. Fujii, K. and H. Morkner, "A 6--30 GHz image-rejection distributed resistive MMIC mixer in a low cost surface mount package," IEEE MTT-S Int. Microw. Symp. Dig., 37-40, Jun. 2005.
doi:10.1109/MWSYM.2005.1516514

10. Passiopoulos, G. and K. Lamacraft, "A compact L-band LTCC mixer with high image rejection," IEEE MTT-S Int. Microw. Symp. Dig., 249-252, Seattle, WA, 2002.

11. Mourant, J. M. and S. Jurgiel, "A broadband planar image reject mixer," IEEE MTT-S Int. Microw. Symp. Dig., Vol. 3, 1637-1640, May 1994.

12. Mongia, R., I. Bahl, and P. Bhartia, RF and Microwave Coupled-Line Circuits, 136-137, Artech House, 1999.