Vol. 108
Latest Volume
All Volumes
PIER 180 [2024] PIER 179 [2024] PIER 178 [2023] PIER 177 [2023] PIER 176 [2023] PIER 175 [2022] PIER 174 [2022] PIER 173 [2022] PIER 172 [2021] PIER 171 [2021] PIER 170 [2021] PIER 169 [2020] PIER 168 [2020] PIER 167 [2020] PIER 166 [2019] PIER 165 [2019] PIER 164 [2019] PIER 163 [2018] PIER 162 [2018] PIER 161 [2018] PIER 160 [2017] PIER 159 [2017] PIER 158 [2017] PIER 157 [2016] PIER 156 [2016] PIER 155 [2016] PIER 154 [2015] PIER 153 [2015] PIER 152 [2015] PIER 151 [2015] PIER 150 [2015] PIER 149 [2014] PIER 148 [2014] PIER 147 [2014] PIER 146 [2014] PIER 145 [2014] PIER 144 [2014] PIER 143 [2013] PIER 142 [2013] PIER 141 [2013] PIER 140 [2013] PIER 139 [2013] PIER 138 [2013] PIER 137 [2013] PIER 136 [2013] PIER 135 [2013] PIER 134 [2013] PIER 133 [2013] PIER 132 [2012] PIER 131 [2012] PIER 130 [2012] PIER 129 [2012] PIER 128 [2012] PIER 127 [2012] PIER 126 [2012] PIER 125 [2012] PIER 124 [2012] PIER 123 [2012] PIER 122 [2012] PIER 121 [2011] PIER 120 [2011] PIER 119 [2011] PIER 118 [2011] PIER 117 [2011] PIER 116 [2011] PIER 115 [2011] PIER 114 [2011] PIER 113 [2011] PIER 112 [2011] PIER 111 [2011] PIER 110 [2010] PIER 109 [2010] PIER 108 [2010] PIER 107 [2010] PIER 106 [2010] PIER 105 [2010] PIER 104 [2010] PIER 103 [2010] PIER 102 [2010] PIER 101 [2010] PIER 100 [2010] PIER 99 [2009] PIER 98 [2009] PIER 97 [2009] PIER 96 [2009] PIER 95 [2009] PIER 94 [2009] PIER 93 [2009] PIER 92 [2009] PIER 91 [2009] PIER 90 [2009] PIER 89 [2009] PIER 88 [2008] PIER 87 [2008] PIER 86 [2008] PIER 85 [2008] PIER 84 [2008] PIER 83 [2008] PIER 82 [2008] PIER 81 [2008] PIER 80 [2008] PIER 79 [2008] PIER 78 [2008] PIER 77 [2007] PIER 76 [2007] PIER 75 [2007] PIER 74 [2007] PIER 73 [2007] PIER 72 [2007] PIER 71 [2007] PIER 70 [2007] PIER 69 [2007] PIER 68 [2007] PIER 67 [2007] PIER 66 [2006] PIER 65 [2006] PIER 64 [2006] PIER 63 [2006] PIER 62 [2006] PIER 61 [2006] PIER 60 [2006] PIER 59 [2006] PIER 58 [2006] PIER 57 [2006] PIER 56 [2006] PIER 55 [2005] PIER 54 [2005] PIER 53 [2005] PIER 52 [2005] PIER 51 [2005] PIER 50 [2005] PIER 49 [2004] PIER 48 [2004] PIER 47 [2004] PIER 46 [2004] PIER 45 [2004] PIER 44 [2004] PIER 43 [2003] PIER 42 [2003] PIER 41 [2003] PIER 40 [2003] PIER 39 [2003] PIER 38 [2002] PIER 37 [2002] PIER 36 [2002] PIER 35 [2002] PIER 34 [2001] PIER 33 [2001] PIER 32 [2001] PIER 31 [2001] PIER 30 [2001] PIER 29 [2000] PIER 28 [2000] PIER 27 [2000] PIER 26 [2000] PIER 25 [2000] PIER 24 [1999] PIER 23 [1999] PIER 22 [1999] PIER 21 [1999] PIER 20 [1998] PIER 19 [1998] PIER 18 [1998] PIER 17 [1997] PIER 16 [1997] PIER 15 [1997] PIER 14 [1996] PIER 13 [1996] PIER 12 [1996] PIER 11 [1995] PIER 10 [1995] PIER 09 [1994] PIER 08 [1994] PIER 07 [1993] PIER 06 [1992] PIER 05 [1991] PIER 04 [1991] PIER 03 [1990] PIER 02 [1990] PIER 01 [1989]
2010-09-30
Larger Absolute Band Gaps in Two-Dimensional Photonic Crystals Fabricated by a Three-Order-Effect Method
By
Progress In Electromagnetics Research, Vol. 108, 385-400, 2010
Abstract
In this paper, based on different influences of the lattice symmetry, the geometry of dielectric rod, and the structure of unit cell to absolute gaps we propose a so-called three-order-effect method for the construction of two-dimensional (2D) photonic crystals (PCs) with larger absolute gaps. As an example, by means of our approach we fabricate a 2D hexagonal lattice of cylinder with an optimal rod adding at the center of the unit cell, where the absolute gap is larger than that of the PC with similar structure studied by other group previously. On the other hand, we also find that many of the 2D PCs with larger absolute gaps reported previously possess optimal first-order and second-order substructures. Our three-order-effect method would be useful for the design of 2D PCs with larger absolute gaps.
Citation
Hai Li, and Xiangbo Yang, "Larger Absolute Band Gaps in Two-Dimensional Photonic Crystals Fabricated by a Three-Order-Effect Method," Progress In Electromagnetics Research, Vol. 108, 385-400, 2010.
doi:10.2528/PIER10072505
References

1. Yablonovitch, E., "Inhibited spontaneous emission in solid-state physics and electronics," Phys. Rev. Lett., Vol. 58, No. 20, 2059-2062, 1987.

2. John, S., "Strong localization of photons in certain disordered dielectric superlattices," Phys. Rev. Lett., Vol. 58, No. 23, 2486-2489, 1987.

3. Jensen, J. S. and O. Sigmund, "Systematic design of photonic crystal structures using topology optimization: Low-loss waveg-uide bends," Appl. Phys. Lett., Vol. 84, No. 12, 2022-2024, 2004.

4. Bjarklev, A., J. B. Jensen, J. Riishede, J. Broeng, J. Laegsgaard, T. Tanggaard Larsen, T. Sorensen, K. Hougaard, and O. Bang, "Photonic crystal structures in sensing technology," Proc. of SPIE, Vol. 5502, 9-16, 2004.

5. Maka, T., D. N. Chigrin, S. G. Romanov, and C. M. Sotomayor Torres, "Three dimensional photonic crystals in the visible regime," Progress In Electromagnetics Research, Vol. 41, 307-335, 2003.

6. Srivastava, R., S. Srivastava, and S. P. Ojha, "Negative refraction by photonic crystal," Progress In Electromagnetics Research B, Vol. 2, 15-26, 2008.

7. Wu, J. J., D. Chen, K. L. Liao, T. J. Yang, and W. L. Ouyang, "The optical properties of Bragg fiber with a fiber core of 2-dimensional elliptical-hole photonic crystal structure," Progress In Electromagnetics Research Letters, Vol. 10, 87-95, 2009.

8. Qi, L. M., Z. Q. Yang, X. Gao, W. X. Liu, and Z. Liang, "Research on three types of rhombus lattice photonic band structures," Journal of Electromagnetic Waves and Applications, Vol. 22, No. 8-9, 1115-1164, 2008.

9. Ozbay, E., B. Temelkuran, and M. Bayindir, "Microwave applications of photonic crystals," Progress In Electromagnetics Research, Vol. 41, 185-209, 2003.

10. Anderson, C. M. and K. P. Giapis, "Larger two-dimensional photonic band gaps," Phys. Rev. Lett., Vol. 77, No. 14, 2949-2952, 1996.

11. Kee, C. S., J. E. Kim, and H. Y. Park, "Absolute photonic band gap in a two-dimensional square lattcie of square dielectric rods in air," Phys. Rev. E, Vol. 56, No. 6, R6291-R6293, 1997.

12. Shen, L. F., S. L. He, and S. S. Xiao, "Large absolute band gaps in two-dimensional photonic crystals formed by large dielectric pixels," Phys. Rev. B, Vol. 66, No. 16, 165315-1-165315-6, 2002.

13. Chern, R. L., C. C. Chang, C. C. Chang, and R. R. Hwang, "Large full band gaps for photonic crystals in two dimensions computed by an inverse method with multigrid acceleration," Phys. Rev. E, Vol. 68, No. 2, 026704-1-026704-5, 2003.

14. Anderson, C. M. and K. P. Giapis, "Symmetry reduction in group 4mm photonic crystals," Phys. Rev. B, Vol. 56, No. 12, 7313-7320, 1997.

15. Malkova, N., S. Kim, T. Dilazaro, and V. Gopalan, "Symmetrical analysis of complex two-dimensional hexagonal photonic crystals," Phys. Rev. B, Vol. 67, No. 12, 125203-1-125203-9, 2003.

16. Zaccaria, R. P., P. Verma, S. Kawaguchi, S. Shoji, and S. Kawata, "Manipulating full photonic band gap in two dimensional birefringent photonic crystals," Opt. Express, Vol. 16, No. 19, 14812-14820, 2008.

17. Sigmund, O. and K. Hougaard, "Geometric properties of optimal photonic crystals," Phys. Rev. Lett., Vol. 100, No. 15, 153904-1-153904-4, 2008.