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Abstract—In this paper, based on different influences of the lattice
symmetry, the geometry of dielectric rod, and the structure of unit
cell to absolute gaps we propose a so-called three-order-effect method
for the construction of two-dimensional (2D) photonic crystals (PCs)
with larger absolute gaps. As an example, by means of our approach
we fabricate a 2D hexagonal lattice of cylinder with an optimal rod
adding at the center of the unit cell, where the absolute gap is larger
than that of the PC with similar structure studied by other group
previously. On the other hand, we also find that many of the 2D PCs
with larger absolute gaps reported previously possess optimal first-
order and second-order substructures. Our three-order-effect method
would be useful for the design of 2D PCs with larger absolute gaps.

1. INTRODUCTION

Periodic dielectric structures on a wavelength scale exhibit photonic
band gaps (PBGs) [1, 2], where the propagating modes of electromag-
netic (EM) wave are forbidden. Being a kind of important PBG struc-
tures, photonic crystals (PCs) have been investigated theoretically and
experimentally [3–9].

Many significant applications of PCs are based on the absolute
photonic band gaps [10–13], and the larger the width of the absolute
band gap is, the better the characteristic will be. Previous studies
show that the absolute gaps in a two-dimensional (2D) lattice can be
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obviously increased by reducing the total symmetry of a PC [14–16],
but in order to obtain larger absolute gaps for a given PC, how to
reduce the structure symmetry and what extent the symmetry can be
reduced to are still uncertain.

In this paper, we study the absolute gaps of 2D PCs with different
geometry structures and find that the lattice symmetry has a decisive
effect on the widths of absolute gaps, that the geometry of dielectric
rod plays an important role in the controlling of the widths of absolute
gaps, and that the structure of a unit cell can influence the widths
of absolute gaps to a significant degree. Based on these results we
propose a so-called three-order-effect method for the construction of
2D PCs with larger absolute gaps and point out that a hexagonal
lattice and a cylindric dielectric rod are the optimal first-order and
second-order substructures, respectively. Although the general optimal
third-order substructure cannot be determined simply, here we provide
an effective approach to seek the optimal third-order substructure.
Inserting optimal rods and/or connecting slabs at the points/sides,
which correspond to the places with high symmetry of the first
Brillouin zone, one can change the shapes and/or positions of photonic
bands and decrease the degree of degeneracy of the bands, and then
wider absolute gaps may be created. As an example, by means of
our approach we fabricate a 2D hexagonal lattice of cylinder with an
optimal rod adding at the center of the unit cell. It is found that the
absolute gap created by this PC is larger than that of the PC with
similar structure studied by other group previously [10]. On the other
hand, one can see that the first-order and second-order substructures
of the 2D PCs with wider absolute gaps reported formerly are all
optimal [10, 13]. Further, we compare our three-order-effect method
with other corresponding approaches and find that the structures
constructed by our method are better than those reported previously.
The three-order-effect technique would provide a new method for the
designing of 2D PCs with wider absolute gaps.

This paper is organized as follows. In Section 2, we introduce the
theory for calculating band structures of 2D PCs. The three-order-
effect method is presented in Section 3. In Section 4, we give the results
and discussions. Finally the conclusions are drawn in Section 5.

2. THEORY

For linear isotropic and frequency-independent dielectric materials
with permeability close to 1.0, the time-harmonic modes in two



Progress In Electromagnetics Research, Vol. 108, 2010 387

dimensions for E polarization can be expressed as
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where E(r̄, t) and H(r̄, t) are the electric and magnetic field intensities,
respectively, and ε = ε(r̄) is the dielectric function. The periodicity of
ε(r̄) implies

ε(r̄ + āj) = ε(r̄), (j = 1, 2), (3)

where āj is the elementary lattice vector of the 2D PC. Being spatial
periodic 1/ε(r̄) can be expanded in the following Fourier series:
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where Ḡ is the reciprocal vector. By use of Bloch’s theorem E(r̄) and
H(r̄) can be expressed as
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where ~k is a 2D wave vector and n is a band index. Substituting
Eqs. (5) ((6)) into Eqs. (1) ((2)) one can obtain the following eigenvalue
equations for the expansion coefficients:
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Hkn

(
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Then one can calculate photonic bands by solving Eqs. (7) and (8). In
this paper, we focus on investigating the relationship between lattice
structures and absolute gaps and have not paid much attention to the
the convergence of the calculation. All of our simulations are obtained
by means of “BandSOLVE 1.3” of “Rsoft” software, where the grid is
chosen to be 128× 128.
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3. THREE-ORDER-EFFECT METHOD

For the different influences to the absolute gaps, we separate a 2D PC
into three orders of substructures and propose a so-called three-order-
effect method for the construction of 2D PCs with larger absolute gaps.

3.1. Optimal First-order Substructure

In Fig. 1, we show three kinds of simple lattices of regular quadrangular
prism and calculate the widths of the absolute gaps of these 2D PCs,
respectively. The relationship between the gap-midgap ratio and the
filling fraction is plotted in Fig. 2.

From Fig. 2, one can see that (1) for the triangular lattice the
absolute band gaps appear at the filling fractions of 0.26–0.33, 0.40–
0.53, and 0.59–0.63, respectively, and the largest absolute gap-midgap
ratio is 0.023986; (2) for the square lattice the band gap appears at
the filling fraction of 0.20–0.48 and the absolute gap-midgap ratio is
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Figure 1. Three kinds of lattices of regular quadrangular prism and
their first Brillouin zones, where ā1 and ā2 are the translation vectors
and d is the side length of a regular quadrangular prism. (a) Triangular
lattice. (b) Square lattice. (c) Hexagonal lattice.
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Figure 2. The relationship between gap-midgap ratio and filling
fraction for the lattices shown in Fig. 1, where the dielectric contrast
is ε/ε0 = 16.

less than 0.066381; (3) for the hexagonal lattice the band gap appears
at the filling fraction of 0.06–0.57 and the absolute gap-midgap ratio
is less than 0.152720. The average absolute gap-midgap ratio of the
hexagonal lattice is much larger than that of the square lattice and
that of the triangular lattice is very small. It means that for the same
dielectric contrast and same kinds of prisms, the hexagonal lattice can
create largest absolute gap.

Obviously, the lattice symmetry influences decisively the positions
and widths of absolute gaps and the effect of the lattice symmetry for
creating absolute gaps is the first order effect. So, we call the basic
lattice structure the first-order substructure. For 2D PCs there are
only three kinds of basic lattice structures, the triangular, square and
hexagonal lattices. Based on the results shown in Fig. 2 our three-
order-effect method points out that the hexagonal lattice shown in
Fig. 1(c) is the optimal first-order substructure.

On the other hand, the plane group symmetries of the triangular,
square and hexagonal lattices are 6 mm, 4 mm, and 3 m, respectively.
From the point of view of the lattice symmetry, the reduction of
symmetry can significantly increase the size of absolute gaps [10]. Our
three-order-effect method points out that in order to obtain larger
absolute gaps the symmetry of the first-order substructure should be
reduced to the minimum.
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3.2. Optimal Second-order Substructure

Based on the optimal first-order substructure, we now investigate the
influence of the rod shape on absolute gaps. The results for the
relationship between the largest absolute gap-midgap ratio and the
rod shape are shown in Table 1.

From Table 1, one can see that the maximal absolute gap-midgap
ratio increases monotonously with the increment of the side number
of cross sections of rods and the maximal absolute gap-midgap ratio
of the hexagonal lattice of cylinder is 1.555 times larger than that
of triangular prism. On the other hand, when the side number of
the cross section of a rod is bigger than 5, the filling fraction of the
maximal absolute gap-midgap ratio keeps approximately constant. It
means that the rod shape plays an important role in the controlling of
the width of absolute gaps and the effect of the rod shape for creating
absolute gaps is the second order effect. So, we call the shape of the
rod at the lattice point, but not in the unit cell, the second-order
substructure. Based on the results shown in Table 1, our three-order-
effect method points out that cylinder is the optimal second-order
substructure.

Table 1. The data of the maximal absolute gaps of the hexagonal
lattices of eleven kinds of rods, where the 1st column shows the shapes
of cross sections of rods, the 2nd column gives the filling fractions of
the lattice for the maximal absolute gaps, the 3rd column provides the
widths of the maximal absolute gaps, the 4th column lists the mid-
frequencies of the maximal absolute gaps, and the 5th column writes
out the maximal absolute gap-midgap ratios. The dielectric contrast
is ε/ε0 = 16 and a is the lattice constant.

Cross section of Rod f a∆ω/2πc aωmid/2πc ∆ω/ωmid

Regular Triangle 0.350 0.032737 0.323365 0.101238
Square 0.320 0.051138 0.334850 0.152720

Regular Pentagon 0.295 0.053169 0.342398 0.155285
Regular Hexagon 0.295 0.053400 0.342000 0.155891
Regular Heptagon 0.295 0.053505 0.341852 0.156516
Regular Octagon 0.295 0.053600 0.342000 0.156691
Regular Nonagon 0.295 0.053600 0.342000 0.156746
Regular Decagon 0.295 0.053546 0.341544 0.156776

Regular Dodecagon 0.295 0.053692 0.341608 0.157174
Regular Hexadecagon 0.295 0.053722 0.341592 0.157268

Circle 0.295 0.053775 0.341590 0.157427
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3.3. Third-order Substructure

For many 2D PCs there exist band gaps of some polarizations, but
these gaps may not overlap to generate absolute ones or the size of
absolute band gaps is often limited by band degeneracies at the lattice
symmetry points [14, 16]. By reducing the the symmetry of the unit
cell, these degeneracies can be lifted and wider absolute gaps can be
obtained, for the 2D more symmetric PCs new absolute gaps can be
created [14]. The reduction of the symmetry of the unit cell can be
achieved by inserting dielectric geometrical structures at well-chosen
place(s). That is to say, absolute gaps can be widened by changing the
symmetry of the unit cell and the structure of a unit cell can influence
the widths of absolute gaps to a significant degree. For generating
absolute gaps the effect of the structure of a unit cell is the third
order effect and we call the structure of a unit cell the third-order
substructure.

Not as determinable as the first-order and second-order
substructures, the general optimal third-order substructure can not
be determined simply. Based on the aforementioned principle of
the reduction of the symmetry of a unit cell, our three-order-effect
method suggests an effective approach to seek the optimal third-
order substructures as follows. In the unit cell of a hexagonal lattice
of cylinder, one can obtain the optimal third-order substructures
by inserting optimal rods and/or connecting slabs at the symmetric
points/sides. Here, we keep the optimal first-order and second-order
substructures, but not the filling fractions, unchanged.

For example, we compare the result of the square lattice reported
in [14] with that obtained by our three-order-effect method. The
square lattice is illustrated in Fig. 3. In [14], the filling fraction
keeps to be 0.33, and the maximal absolute gap-midgap ratio was
searched by scanning radius ratio β = r2/r1. It was found that the
maximal absolute gap-midgap ratio ∆ω/ωmid = 0.037234 occurs at
β = 0.57. In our calculation, the radius of the bigger rod r1 keeps
to be 0.3241a, where a is the lattice constant, and the maximal
absolute gap-midgap ratio is searched by scanning the radius of the
smaller rod r2. The maximal absolute gap-midgap ratio we obtained
is ∆ω/ωmid = 0.038989 at β = 0.615 (see Fig. 4). One can see that
our result is 4.71% larger than that reported in [14].

On the other hand, Sigmund and Hougaard [17] recently proposed
an interesting approach for the optimization of PC structures. By
means of this method larger TM and TE gaps can be created
by the elliptic rods with centers defined by the generators of
an optimal centroidal Voronoi tessellation and the walls of this
tessellation. Although systematic results can not be obtained when



392 Li and Yang

y

a a1 2

x

M

XΓ

rr2 1

--

Figure 3. The square lattice with two kinds of rods and its first
Brillouin zone, where ā1 and ā2 are the translation vectors (ā1 =
−
√
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2 aēx +

√
2
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Figure 4. Gap map for the square lattice shown in Fig. 3, where the
radius of the bigger rod is r1 = a

√
f/π = a

√
0.33/π = 0.3241a and the

dielectric contrast is ε/ε0 = 11.4. The maximal absolute gap occurs at
β = 0.615 (arrow).

this optimization algorithm is applied to the case of full gaps,
Ref. [17] provided a new understanding of the problem of PC structure
optimization. Our three-order-effect method may not be effective for
the designing of the 2D PCs with larger TM or TE gaps, but will be
useful for the construction of the 2D PCs with larger simultaneous TM
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and TE gaps, because the optimal first-order substructure, a hexagonal
lattice and the second-order substructure, a cylindric dielectric rod
would be a major contribution towards the generation of larger
absolute gaps, and inserting optimal rods and/or connecting slabs
at the symmetry points/sides of the unit cell can change the shapes
and/or positions of photonic bands and then enlarge the overlap degree
of TM and TE gaps significantly.

4. RESULTS AND DISCUSSIONS

In order to demonstrate the effective methods of seeking optimal third-
order substructures, in this section we show two kinds of optimizational
2D PCs and analyse the influence of the third-order substructure to
the absolute gaps.

4.1. Hexagonal Lattice of Cylinder with Connecting Slabs

Reference [13] reported an effective structure with larger absolute gaps,
where the connecting slabs are inserted on the boundary of each unit
cell (see Fig. 5). The design principle of this PC is accordant with
that of our three-order-effect method. In this subsection, we analyse
the influence of the three-order substructure to absolute gaps. For
simplicity, here we call the crystal shown in Fig. 5 the complex lattice
and the hexagonal lattice of cylinder without connecting slabs the
simple one, respectively.

Figures 6(a) and 6(b) show the band structures of E-polarization
of the simple and complex lattices in the range of 0 ∼ 0.8(ωa/2πc),
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Figure 5. The hexagonal lattice of cylinder with connecting slabs
and its first Brillouin zone, where ā1 and ā2 are translation vectors
(ā1=aēx, ā2=1

2aēx +
√

3
2 aēy) and r and d are the radius of a cylinder

and the width of a connecting slab, respectively.
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Figure 6. The band structures for the simple lattice with r = 0.155a
and the complex lattice shown in Fig. 5 with r = 0.155a and d =
0.035a. (a) and (b) are the TE spectra for the simple and complex
lattices, respectively. (c) and (d) are the TM spectra for the simple
and complex lattices, respectively. (e) and (f) are the TE and TM
spectra for the simple and complex lattices, respectively.

respectively, where there exist two band gaps. The corresponding mid-
frequencies in Fig. 6(a) are ω

(E)
mid1 = 0.460526(ωa/2πc) and ω

(E)
mid2 =

0.742506(ωa/2πc), respectively. Those in Fig. 6(b) are ω
′(E)
mid1 =

0.440836(ωa/2πc) and ω
′(E)
mid2 = 0.722563(ωa/2πc), respectively. These

two band structures are very similar to each other while the latter
is lower than that of the former. It means that the three-order
substructure of the connecting slabs makes the two TE gaps lower.

Figures 6(c) and 6(d) show the band structures of H-polarization
of the simple and complex lattices in the range of 0 ∼ 0.8(ωa/2πc),
respectively, where there exists only one small band gap. In Fig. 6(c),
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ω
(H)
mid = 0.733270(ωa/2πc). From Fig. 6(d), one can see that after

inserting slabs on the boundary of each unit cell, the first band of
the complex lattice at points M and K moves lower, this results in a
larger TM gap in the range of 0.380959 ∼ 0.493575(ωa/2πc) and its
ω
′(H)
mid = 0.437267(ωa/2πc). It means that the three-order substructure

of the connecting slabs makes the TM gap not only wider but also
closer to the corresponding TE gap.

Figures 6(e) and 6(f) show the absolute band structures of
the simple and complex lattices in the range of 0 ∼ 0.8(ωa/2πc),
respectively. Comparing with Figs. 6(e) and 6(f) one can see that the
first band gaps of E- and H-polarizations of the complex lattice overlap
much more sufficiently than those of the simple lattice, this makes the
width of the absolute gap of the complex lattice be 30% larger than
that of the simple lattice [13]. It shows that inserting appropriate
slabs on the boundary of each unit cell is one of the effective methods
to search an optimal third-order substructure.

4.2. Hexagonal Lattice of Cylinder with Inserting Cylinders

By means of our three-order-effect approach we design another kind
of effective structure for the generating of larger absolute gaps, where
the optimal cylinder is inserted at the the center of each unit cell (see
Fig. 7). For simplicity, in this subsection we call the crystal shown in
Fig. 7 the complex lattice and that without inserting rods the simple
one.

Figures 8(a) and 8(b) show the band structures of E-polarization
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Figure 7. The hexagonal lattice of cylinder with inserting rods
and its first Brillouin zone, where ā1 and ā2 are translation vectors
(ā1=

√
3

2 aēx + 1
2aēy, ā2=aēy) and r1 and r2 are the radii of the bigger

and smaller cylinders, respectively.
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(a) (b)
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Figure 8. The band structures for the simple lattice with r1 = 0.1389a
and the complex lattice shown in Fig. 7 with r1 = 0.1389a and
r2 = 0.082r1. (a) and (b) are the TE spectra for the simple and
complex lattices, respectively. (c) and (d) are the TM spectra for the
simple and complex lattices, respectively. (e) and (f) are the TE and
TM spectra for the simple and complex lattices, respectively.

of the simple and complex lattices in the range of 0.9 ∼ 1.1(ωa/2πc),
respectively, where there exists one band gap. The ranges of the band
gaps in Figs. 8(a) and 8(b) are 0.929091 ∼ 1.067988(ωa/2πc) and
0.922563 ∼ 1.067994(ωa/2πc), respectively. The corresponding mid-
frequencies in Figs. 8(a) and 8(b) are ω

(E)
mid = 0.998539(ωa/2πc) and

ω
′(E)
mid = 0.995279(ωa/2πc), respectively. Obviously, the three-order

substructure of the inserting rod makes the TE gap wider and lower.
Here the dashed lines denote the lower boundary of the band gap.

Figures 8(c) and 8(d) show the band structures of H-polarization
of the simple and complex lattices in the range of 0.9 ∼ 1.1(ωa/2πc),
respectively, where there exists one band gap. The ranges of the band



Progress In Electromagnetics Research, Vol. 108, 2010 397

gaps in Figs. 8(c) and 8(d) are 0.922965 ∼ 1.019795(ωa/2πc) and
0.922632 ∼ 1.018037(ωa/2πc), respectively. The corresponding mid-
frequencies in Figs. 8(c) and 8(d) are ω

(H)
mid = 0.971380(ωa/2πc) and

ω
′(H)
mid = 0.970335(ωa/2πc), respectively. It means that the three-order

substructure of the inserting rods makes the TM gap slightly wider
and lower.

Figures 8(e) and 8(f) show the absolute band structures of the
simple and complex lattices in the range of 0.9 ∼ 1.1(ωa/2πc),
respectively. Comparing with Figs. 8(e) and 8(f) one can see that the
band gaps of E- and H-polarizations of the complex lattice overlap
more sufficiently than that of the simple lattice, this makes the width
of the absolute gap of the complex lattice be larger than that of the
simple lattice. Fig. 9 shows the gap map for the hexagonal lattice of
cylinder shown in Fig. 7 as a function of the cylinder radius ratio,
β(β = r2/r1). One can see that the maximal absolute gap occurs at
β = 0.082 and the maximal gap-midgap ratio is 0.098322. It shows that
inserting an appropriate rod at the center of each unit cell is also one
of the effective methods to search an optimal third-order substructure.

We emphasize that the structure shown in Fig. 7 is similar to
that reported in [10], but our construction method is different from
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Figure 9. Gap map for the hexagonal lattice of cylinder shown in
Fig. 7 as a function of the cylinder radius ratio, β, where r1/a =√√

3
4π f =

√√
3

4π × 0.14 = 0.1389 and the dielectric contrast is ε/ε0 =
11.4. The maximal absolute gap occurs at β = 0.082 (arrow).
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theirs. In [10], the filling fraction was kept invariable and the optimal
structure was searched by scanning the radius ratio β. We keep the
lattice type and rod radius r1 unaltered, where r1 is the optimal radius
of the maximal absolute gaps of the hexagonal lattice of cylinder, and
then search the optimal third-order substructure by scanning β. The
absolute gap-midgap ratio of our structure is 0.03% larger than that
reported in [10].

In a word, for our three-order-effect method the first-order and
second-order substructures should be kept unchanged during the
construction of the 2D PC with larger absolute gaps, i.e., the optimal
PC structure can be simply obtained by seeking the optimal third-
order substructure of the hexagonal lattice of cylinder. So constructing
a clever unit cell structure is the effective approach for the designing
of 2D PCs with larger absolute gaps.

5. CONCLUSION

In this paper, we make use of the plane-wave expansion method
to calculate the band spectra of 2D PCs with different geometry
structures and propose the three-order-effect method to construct 2D
PCs with larger absolute gaps.

Firstly, the widths of absolute gaps of quadrangular prisms arrayed
in three kinds of simple lattices have been calculated, and it is found
that the average absolute gap-midgap ratio of the hexagonal lattice
is much larger than that of the square lattice and that the average
absolute gap-midgap ratio of the square lattice is also much larger than
that of the triangular lattice. It means that for the same dielectric
contrast and same kind of prisms, only the hexagonal lattice can
yield the largest absolute gap. The lattice symmetry influences the
generation and width of absolute gaps decisively, and we call the lattice
structure the first-order substructure. For 2D PCs, a hexagonal lattice
is the optimal first-order substructure.

Secondly, the influence of rod shapes has been also considered. It is
found that the maximal absolute gap-midgap ratio of cylinders arrayed
in hexagonal lattice is 1.555 larger than that of regular triangular
prisms and that a cylinder is the best substructure among all the
prisms. So the rod shape plays an important role in controlling the
width of absolute gaps, and we call the geometric structure of rod
the second-order substructure. For 2D PCs, a cylinder is the optimal
second-order substructure.

Thirdly, the third-order substructure is much more complicated
than the first-order and second-order ones. Analyzing the relationship
between the widths of band gaps and the structures of unit cells, one



Progress In Electromagnetics Research, Vol. 108, 2010 399

knows that absolute gaps can be widened by changing the symmetry of
each unit cell and that the structure of a unit cell can influence absolute
gaps to a significant degree. So, we define the structure of a unit cell
as the third-order substructure. By the use of our three-order-effect
method we fabricate two kinds of 2D PCs with larger absolute gaps
by inserting appropriate rods and/or connecting slabs in each unit cell
while the first-order and second-order substructures keep unchanged.
The widths of absolute gaps for our constructed 2D PCs are larger
than those of the similar structures reported previously.

On the other hand, it is also found that the first-order and second-
order substructures of the 2D PCs with wider absolute gaps reported
formerly are all optimal [10, 13].

In summary, our three-order-effect method may be useful for the
designing of 2D PCs with larger absolute gaps.
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