Vol. 108
Latest Volume
All Volumes
PIER 180 [2024] PIER 179 [2024] PIER 178 [2023] PIER 177 [2023] PIER 176 [2023] PIER 175 [2022] PIER 174 [2022] PIER 173 [2022] PIER 172 [2021] PIER 171 [2021] PIER 170 [2021] PIER 169 [2020] PIER 168 [2020] PIER 167 [2020] PIER 166 [2019] PIER 165 [2019] PIER 164 [2019] PIER 163 [2018] PIER 162 [2018] PIER 161 [2018] PIER 160 [2017] PIER 159 [2017] PIER 158 [2017] PIER 157 [2016] PIER 156 [2016] PIER 155 [2016] PIER 154 [2015] PIER 153 [2015] PIER 152 [2015] PIER 151 [2015] PIER 150 [2015] PIER 149 [2014] PIER 148 [2014] PIER 147 [2014] PIER 146 [2014] PIER 145 [2014] PIER 144 [2014] PIER 143 [2013] PIER 142 [2013] PIER 141 [2013] PIER 140 [2013] PIER 139 [2013] PIER 138 [2013] PIER 137 [2013] PIER 136 [2013] PIER 135 [2013] PIER 134 [2013] PIER 133 [2013] PIER 132 [2012] PIER 131 [2012] PIER 130 [2012] PIER 129 [2012] PIER 128 [2012] PIER 127 [2012] PIER 126 [2012] PIER 125 [2012] PIER 124 [2012] PIER 123 [2012] PIER 122 [2012] PIER 121 [2011] PIER 120 [2011] PIER 119 [2011] PIER 118 [2011] PIER 117 [2011] PIER 116 [2011] PIER 115 [2011] PIER 114 [2011] PIER 113 [2011] PIER 112 [2011] PIER 111 [2011] PIER 110 [2010] PIER 109 [2010] PIER 108 [2010] PIER 107 [2010] PIER 106 [2010] PIER 105 [2010] PIER 104 [2010] PIER 103 [2010] PIER 102 [2010] PIER 101 [2010] PIER 100 [2010] PIER 99 [2009] PIER 98 [2009] PIER 97 [2009] PIER 96 [2009] PIER 95 [2009] PIER 94 [2009] PIER 93 [2009] PIER 92 [2009] PIER 91 [2009] PIER 90 [2009] PIER 89 [2009] PIER 88 [2008] PIER 87 [2008] PIER 86 [2008] PIER 85 [2008] PIER 84 [2008] PIER 83 [2008] PIER 82 [2008] PIER 81 [2008] PIER 80 [2008] PIER 79 [2008] PIER 78 [2008] PIER 77 [2007] PIER 76 [2007] PIER 75 [2007] PIER 74 [2007] PIER 73 [2007] PIER 72 [2007] PIER 71 [2007] PIER 70 [2007] PIER 69 [2007] PIER 68 [2007] PIER 67 [2007] PIER 66 [2006] PIER 65 [2006] PIER 64 [2006] PIER 63 [2006] PIER 62 [2006] PIER 61 [2006] PIER 60 [2006] PIER 59 [2006] PIER 58 [2006] PIER 57 [2006] PIER 56 [2006] PIER 55 [2005] PIER 54 [2005] PIER 53 [2005] PIER 52 [2005] PIER 51 [2005] PIER 50 [2005] PIER 49 [2004] PIER 48 [2004] PIER 47 [2004] PIER 46 [2004] PIER 45 [2004] PIER 44 [2004] PIER 43 [2003] PIER 42 [2003] PIER 41 [2003] PIER 40 [2003] PIER 39 [2003] PIER 38 [2002] PIER 37 [2002] PIER 36 [2002] PIER 35 [2002] PIER 34 [2001] PIER 33 [2001] PIER 32 [2001] PIER 31 [2001] PIER 30 [2001] PIER 29 [2000] PIER 28 [2000] PIER 27 [2000] PIER 26 [2000] PIER 25 [2000] PIER 24 [1999] PIER 23 [1999] PIER 22 [1999] PIER 21 [1999] PIER 20 [1998] PIER 19 [1998] PIER 18 [1998] PIER 17 [1997] PIER 16 [1997] PIER 15 [1997] PIER 14 [1996] PIER 13 [1996] PIER 12 [1996] PIER 11 [1995] PIER 10 [1995] PIER 09 [1994] PIER 08 [1994] PIER 07 [1993] PIER 06 [1992] PIER 05 [1991] PIER 04 [1991] PIER 03 [1990] PIER 02 [1990] PIER 01 [1989]
2010-08-28
Parallel MoM -PO Method with Out-of-Core Technique for Analysis of Complex Arrays on Electrically Large Platforms
By
Progress In Electromagnetics Research, Vol. 108, 1-21, 2010
Abstract
A Message Passing Interface (MPI) parallel implementation of a hybrid solver that combines the Method of Moments (MoM) with higher order basis functions and Physical Optics (PO) has been successfully used to solve a challenging problem including a 2160-slot waveguide array on an airplane with a maximum dimension larger than 1000 wavelengths. The block-partitioned scheme for the large dense MoM matrix combined with the process-cyclic scheme for the PO discretized triangles is designed to achieve excellent load balance and high parallel efficiency. To break the limitation of physical memory, the parallel out-of-core technique is introduced to tackle large dense systems generated using the MoM formulation. This research provides a solution with reasonable accuracy for solving large on-board antenna problems but has very low memory usage.
Citation
Xun-Wang Zhao, Yu Zhang, Hong-Wei Zhang, Daniel Garcia-Donoro, Sio-Weng Ting, Tapan Kumar Sarkar, and Chang-Hong Liang, "Parallel MoM -PO Method with Out-of-Core Technique for Analysis of Complex Arrays on Electrically Large Platforms," Progress In Electromagnetics Research, Vol. 108, 1-21, 2010.
doi:10.2528/PIER10072108
References

1. Taboada, J. M., M. G. Araujo, J. M. Bertolo, L. Landesa, F. Obelleiro, and J. L. Rodriguez, "MLFMA-FFT parallel algorithm for the solution of large-scale problems in electromagnetics," Progress In Electromagnetics Research, Vol. 105, 15-30, 2010.
doi:10.2528/PIER10041603

2. Zhang, Y. and T. K. Sarkar, Parallel Solution of Integral Equation Based EM Problems in the Frequency Domain, Wiley, New Jersey, 2009.
doi:10.1002/9780470495094

3. Zhang, Y., M. Taylor, T. K. Sarkar, H. Moon, and M.-T. Yuan, "Solving large complex problems using a higher-order basis: Parallel in-core and out-of-core integral-equation solvers," IEEE Antennas and Propag. Mag., Vol. 50, No. 4, 13-30, Aug. 2008.
doi:10.1109/MAP.2008.4653660

4. Zhang, Y., T. K. Sarkar, M. Taylor, and H. Moon, "Solving MoM problems with million level unknowns using a parallel out-of-core solver on a high performance cluster," IEEE Antennas Propag. Soc. Int. Symp., 1-4, June 1-5, 2009.

5. Zhang, Y., M. Taylor, T. K. Sarkar, A. De, M.-T. Yuan, H. Moon, and C.-H. Liang, "Parallel in-core and out-of-core solution of electrically large problems using the RWG basis functions," IEEE Antennas and Propag. Mag., Vol. 50, No. 5, 84-94, Oct. 2008.
doi:10.1109/MAP.2008.4674713

6. Yang, M.-L. and X.-Q. Sheng, "Parallel high-order FE-BI-MLFMA for scattering by large and deep coated cavities loaded with obstacles," Journal of Electromagnetic Waves and Applications, Vol. 23, No. 13, 1813-1823, 2009.
doi:10.1163/156939309789566932

7. Yuan, J., Y. Qiu, and Q. Z. Liu, "Fast analysis of multiple antennae coupling on very electrical large objects via parallel technique," Journal of Electromagnetic Waves and Applications, Vol. 22, No. 8-9, 1232-1241, 2008.
doi:10.1163/156939308784158887

8. Hennigan, G. and S. Castillo, "Open region, electromagnetic finite-element scattering calculations in anisotropic media on parallel computers," IEEE Antennas Propag. Soc. Int. Symp., 484-487, Jul. 11-16, 1999.

9. Lei, J.-Z., C.-H. Liang, W. Ding, and Y. Zhang, "EMC analysis of antennas mounted on electrically large platforms with parallel FDTD method," Progress In Electromagnetics Research, Vol. 84, 205-220, 2008.
doi:10.2528/PIER08071303

10. Liu, Y., Z. Liang, and Z. Yang, "A novel FDTD approach featuring two-level parallelization on PC cluster," Progress In Electromagnetics Research, Vol. 80, 393-408, 2008.
doi:10.2528/PIER07120703

11. Zhang, Y. J., S. X. Gong, and Y. X. Xu, "Radiation pattern synthesis for arrays of conformal antennas mounted on an irregular curved surface using modified genetic algorithms," Journal of Electromagnetic Waves and Applications, Vol. 23, No. 10, 1255-1264, 2009.
doi:10.1163/156939309789108589

12. Harrington, R. F., Field Computation by Moment Methods, IEEE Press, New York, 1993.
doi:10.1109/9780470544631

13. Bouche, D. P., F. A. Molinet, and R. Mittra, "Asymptotic and hybrid techniques for electromagnetic scattering," Proc. IEEE, Vol. 81, No. 12, 1658-1684, Dec. 1993.
doi:10.1109/5.248956

14. Hodges, R. E. and Y. Rahmat-Sammi, "An iterative current-based hybrid method for complex structures," IEEE Trans. Antennas Propag., Vol. 45, No. 2, 265-276, Feb. 1997.
doi:10.1109/8.560345

15. Djordjevic, M. and B. M. Notaros, "Higher order hybrid method of moments{physical optics modeling technique for radiation and scattering from large perfectly conducting surfaces," IEEE Trans. Antennas Propag., Vol. 53, No. 2, 800-813, Feb. 2005.
doi:10.1109/TAP.2004.841318

16. Chen, X. J., X. W. Shi, and L. Xu, "A hybrid method used to analysis the double reflection between two curved surfaces," Journal of Electromagnetic Waves and Applications, Vol. 22, No. 8-9, 1191-1198, 2008.
doi:10.1163/156939308784158706

17. Hu, B., X.-W. Xu, M. He, and Y. Zheng, "More accurate hybrid PO-MoM analysis for an electrically large antenna-radome structure," Progress In Electromagnetics Research, Vol. 92, 255-265, 2009.
doi:10.2528/PIER09022301

18. Zhang, Y., X.-W. Zhao, D. G. Doñoro, S.-W. Ting, and T. K. Sarkar, "Parallelized hybrid method with higher-order MoM and PO for analysis of phased array antennas on electrically large platforms," IEEE Trans. Antennas Propag., to be published.

19. Zhang, Y., X.-W. Zhao, M. Chen, and C.-H. Liang, "An efficient MPI virtual topology based parallel, iterative MoM-PO hybrid method on PC clusters," Journal of Electromagnetic Waves and Applications, Vol. 20, No. 5, 661-676, 2006.
doi:10.1163/156939306776137782

20. Kolundzija, B. M. and A. R. Djordjevic, Electromagnetic Modeling of Composite Metallic and Dielectric Structures, Artech House, Norwood, 2002.

21. Yuan, H. B., N. Wang, and C. H. Liang, "Fast algorithm to extract the singularity of higher order moment method," Journal of Electromagnetic Waves and Applications, Vol. 22, No. 8-9, 1250-1257, 2008.
doi:10.1163/156939308784158904

22. Rao, S. M., D. R. Wilton, and A. W. Glisson, "Electromagnetic scattering by surfaces of arbitrary shape," IEEE Trans. Antennas Propag., Vol. 30, No. 3, 409-418, May 1982.
doi:10.1109/TAP.1982.1142818

23. Zha, F.-T., S.-X. Gong, Y.-X. Xu, Y. Guan, and W. Jiang, "Fast shadowing technique for electrically large targets using Z-buffer," Journal of Electromagnetic Waves and Applications, Vol. 23, No. 2-3, 341-349, 2009.
doi:10.1163/156939309787604409

24. Rius, J. M., M. Ferrando, and L. Jofre, "GRECO: Graphical electromagnetic computing for RCS prediction in real time," IEEE Antennas and Propag. Mag., Vol. 35, No. 2, 7-17, Apr. 1993.
doi:10.1109/74.207645

25. http://www.feko.info/.

26. Ebadi, S. and K. Forooraghi, "Comparative study of annular and rectangular waveguides for application in annular waveguide slot antennas," Journal of Electromagnetic Waves and Applications, Vol. 22, No. 16, 2217-2230, 2008.
doi:10.1163/156939308787522573

27. Hua, Y. and J. Li, "Analysis of longitudinal shunt waveguide slots using FEBI," Journal of Electromagnetic Waves and Applications, Vol. 23, No. 14-15, 2041-2046, 2009.
doi:10.1163/156939309789932520

28. Yuan, H.-W., S.-X. Gong, Y. Guan, and D.-Y. Su, "Scattering analysis of the large array antennas using the synthetic basis function method," Journal of Electromagnetic Waves and Applications, Vol. 23, No. 2-3, 309-320, 2009.
doi:10.1163/156939309787604364

29. Zhao, X.-W., Y. Zhang, T. K. Sarkar, S.-W. Ting, and C.-H. Liang, "Analysis of a traveling-wave waveguide array with narrow-wall slots using higher order basis functions in method of moments," IEEE Antennas Wireless Propag. Lett., Vol. 8, 1390-1393, 2009.
doi:10.1109/LAWP.2009.2039742