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Abstract—A Message Passing Interface (MPI) parallel implementa-
tion of a hybrid solver that combines the Method of Moments (MoM)
with higher order basis functions and Physical Optics (PO) has been
successfully used to solve a challenging problem including a 2160-slot
waveguide array on an airplane with a maximum dimension larger than
1000 wavelengths. The block-partitioned scheme for the large dense
MoM matrix combined with the process-cyclic scheme for the PO dis-
cretized triangles is designed to achieve excellent load balance and
high parallel efficiency. To break the limitation of physical memory,
the parallel out-of-core technique is introduced to tackle large dense
systems generated using the MoM formulation. This research provides
a solution with reasonable accuracy for solving large on-board antenna
problems but has very low memory usage.

1. INTRODUCTION

With the rapid development of computer technology, especially
with the advent of multi-core technology in recent years, parallel
computation is playing a more and more important role in
computational electromagnetics (CEM). The constant development of
the computer technology sets objectives more and more ambitious for
the electromagnetic solvers, as described by Taboada et al. in [1].
Parallel technology has been used in various CEM methods, such
as the Method of Moments (MoM) [2–5], Fast Multipole Method
(FMM) [1, 6, 7], Finite Element Method (FEM) [8] and Finite-
Difference Time-Domain method (FDTD) [9–10].

On the other hand, there are many challenging realistic problems
that urgently need to be overcome. One typical problem is the
characteristic analysis of a complex antenna mounted on an electrically
large platform [11]. Many different electromagnetic computational
approaches have been applied for the solution of this class of problem.
One traditional and widely adopted method is the MoM [12]. At this
moment, the parallel higher order MoM is capable of solving electrically
large problems of several hundred wavelengths in dimensions with
up to problems with million level unknowns [4]. However, it is still
very difficult nowadays to analyze radiation from on-board antennas
by MoM alone when the electrical sizes of the platforms become
larger and larger (e.g., thousands of wavelengths) as the operating
frequency increases. With this background, parallel hybrid techniques
that combine MoM with high-frequency techniques, either ray-based
or current-based [13], have a potential to address this class of problem.
MoM hybrid with current-based high-frequency asymptotic methods,
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such as the Physical Optics (PO) [14–17], is a preferable choice since
MoM is based on currents as well.

Recently, a parallel in-core hybrid MoM-PO method was proposed
for analysis of phased array antennas on electrically large platforms by
the authors in [18]. The phased array in the MoM region could not
be very large due to the lack of physical memory (RAM), which is a
common drawback of the in-core method [2]. Specifically, the array
in [18] was a relatively small slotted waveguide array with 10 × 10
elements. In practice, however, an on-board array usually contains
thousands of elements.

To deal with very large and complex arrays in the absence of
sufficient RAM, this paper presents a parallel out-of-core hybrid MoM-
PO method, which is capable of breaking the limitation of RAM. The
MoM is hybridized with PO by iterating the voltage matrix of the
MoM matrix equation [19]. The out-of-core technique is utilized to
tackle large dense systems generated by MoM, and can simulate large
and complex arrays by occupying a small amount of RAM in reasonable
time. In addition, Higher Order Basis functions (HOBs) [20, 21]
with polynomial forms are employed in the MoM region to sharply
reduce the number of unknowns compared with the low-order basis
functions, in specific, the piecewise Rao-Wilton-Glisson basis functions
(RWGs) [22].

The large dense MoM matrix is divided into a number of
smaller block matrices that are nearly equal in size and distributed
among all participating processes. The strategy of distributing the
blocks is designed appropriately according to the parallel lower/upper
(LU) decomposition solver to minimize the communication between
processes. Note that both the parallel matrix filling and parallel matrix
equation solving schemes are combined with the out-of-core technique.
For the PO method, the discretized elements on the surface of the PO
lit region are partitioned equally through a process-cyclic scheme. For
a hybrid MoM-PO method, the corresponding parallelization schemes
are integrated to obtain good load balance and high parallel efficiency.
The proposed method is validated by utilizing some representative and
challenging examples.

The paper is organized as follows. In Section 2, we briefly review
the basics of the hybrid MoM-PO method based on the iteration of
the MoM voltage matrix. In Section 3, we present the parallelization
methodology. Numerical results are presented in Section 4, followed
by the conclusion.
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2. ITERATIVE VOLTAGE-BASED HIGHER ORDER
MOM-PO METHOD

For completeness, the integral equations and the hybrid scheme are
briefly reviewed in this section. The readers are referred to [2, 19] for
an in-depth discussion of the material.

2.1. Integral Equations

The hybrid MoM-PO method is implemented using the surface integral
equations. To construct the hybrid solution, the structure under
consideration is decomposed into two parts: a MoM region and a PO
region. As the two regions are separated only in the basis-functions
space, they can be physically connected or even overlap [15]. The
proposed hybrid method is able to deal with the connected cases [19],
but it can be more efficient for well separated ones where the two
regions are separated by a sufficient distance.

In the MoM region, both magnetic and electric currents are
used for electromagnetic modeling of multiple materials. The
integral equation employed is the Poggio-Miller-Chang-Harrington-Wu
(PMCHW) formulation [2]. Flexible geometric modeling is achieved by
using truncated cones for wires (feeding pins) and bilinear patches to
characterize surfaces in the MoM region. Efficient approximation for
the unknown currents is obtained by using the Higher Order Basis
functions (HOBs) consisting of combinations of polynomials [2].

The PO region is generally an electrically large and smooth
metallic structure, such as an airplane. For a metallic surface, only
electric current is applied. The Magnetic Field Integral Equation
(MFIE) is used in the PO region [14]. Note that the mutual
interaction [14] and the edge diffraction effects in the PO region are
not taken into account in the proposed MoM-PO method. The surface
of the PO region is discretized into planar triangular facets. This
is different from the quadrilateral discretization of the MoM surface.
However, the hybridization and parallelization schemes in the following
sections are independent of the discretization, which enable one to
utilize triangular or quadrilateral facets in the MoM region and/or PO
region.

2.2. Iterative Voltage-based Hybrid MoM-PO Method

The commonly used approach to hybridize MoM and PO is based
on the generation of the complete hybrid MoM-PO system matrix
equation, which includes the self-impedance matrices of the MoM and
PO regions, and the mutual impedance matrices between the MoM
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and PO regions. The self-impedance matrix of the PO region can be
very sparse since the mutual interactions between the PO currents are
neglected in the proposed MoM-PO approach to maximally reduce the
storage and computational cost of the hybrid method as compared
with the pure MoM [15]. However, when the numbers of unknowns
in both the MoM and PO regions are very large, the self-impedance
matrix of the MoM, the mutual impedance matrices and the relevant
matrix-vector multiplications still incur huge memory requirement and
computational complexity [14].

To make the hybrid MoM-PO method more efficient, the method
of iterating the voltage matrix of the MoM equation with the PO
fields [19] rather than the direct solution of the complete matrix
equation [14, 15] is implemented in this paper. When the MoM and PO
regions are separated by a sufficient distance so that they are loosely
coupled, the iteration procedure can be more efficient than solution of
the complete matrix equation [14].

The general procedure of the iterative hybridization scheme
includes three steps, which are similar to that in [19]. The distinct
difference between the proposed hybrid method and the method in [19]
is that the former introduces magnetic currents for including dielectric
structures in the MoM region, while the latter can only simulate
metallic objects.

The iteration of the MoM voltage matrix is terminated when the
following criterion

∥∥IMoM
iter+1 − IMoM

iter

∥∥ /
∥∥IMoM

iter

∥∥ < ε (1)

is satisfied, where iter denotes the iteration count, IMoM
iter is the

expansion coefficient vector of the MoM basis functions, ε is the user-
specified convergence parameter, and ‖·‖ denotes an appropriate vector
norm. For a loosely coupled case, the change in current on a given
iteration is very small, and hence ε should be set to a small number.

The current distributions in the MoM and PO regions can be
obtained once the iterative process is completed. Then the total fields
radiated by the currents can be found.

3. PARALLEL SCHEMES FOR OUT-OF-CORE MOM-PO
METHOD

The parallel hybrid MoM-PO method mainly consists of two parts,
parallelization of MoM and parallelization of PO. The time consuming
parts in MoM lie in the matrix filling and its solution, whereas those of
PO lie in the PO integrals over all discretized elements. Consequently,
we focus on these procedures in the parallelization methodology.
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3.1. Parallelization of MoM with Out-of-core Technique

The parallelization of the MoM solution involves two steps. The
first step is the matrix filling and the second step is the solution
of the matrix equation. Both of these must be handled efficiently.
Furthermore, efficient parallel matrix filling for MoM with HOBs
introduces new challenges and is quite different from the procedure
used in a MoM formulation using the traditional subdomain basis
functions, e.g., RWGs [5].

To parallelize the solution of the large dense matrix in a MoM
problem, typically one needs to divide the matrix between processes
in such a way that two important conditions are fulfilled: each
process should store approximately the same amount of data, and the
computational load should be equally distributed among the processes
that run on different nodes.

1) Block Matrices: The parallel LU decomposition based on the
ScaLAPACK [3] library package is employed as the solver and the block
storage scheme is designed accordingly.

For explanation purposes, we rewrite the MoM matrix equation
in a general form as

AX = B, (2)

where A denotes the complex dense matrix, X is the unknown vector
to be determined and B denotes the given source vector.

Assume that the matrix A is divided into 6 × 6 blocks, which
are distributed to 6 processes in a 2× 3 process grid, as illustrated in
Figure 1(a). Figure 1(b) shows to which process the blocks of A are
distributed using ScaLAPACK’s distribution methodology.

(a) (b) 

Figure 1. Block-cyclic distribution of a matrix as performed by
ScaLAPACK: (a) a matrix consisting of 6 × 6 blocks and (b) rank
and coordinates of each process owning the corresponding blocks in
(a).
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In Figure 1(a), the outermost numbers denote the row and column
indices of the process coordinates. The top and bottom numbers in any
block of Figure 1(b) denote the process rank and the process coordinate
of a certain process, respectively, corresponding to the block of the
matrix shown in Figure 1(a). By varying the dimensions of the blocks
of A and those of the process grid, different mappings can be obtained.
This scheme can be referred to as a block-cyclic distribution procedure.

For ScaLAPACK, one needs to distribute the matrix over a two-
dimensional process grid, but it can be done in different ways and one
can, more or less, influence the way in which the data related to the
matrix are distributed.

Note that the storage required for the vectors X and B is negligible
compared with that of the large dense matrix A. Therefore, the entire
vectors can be stored in each process.

2) Parallel In-core Matrix Filling: Parallel in-core matrix filling
scheme [18] is reviewed to support the parallel out-of-core matrix filling
scheme.

The impedance matrix is constructed by looping over the number
of geometric elements (number of wires and plates) and performing the
calculation of the elements of the impedance matrix. The parallel filling
of the matrix could be the same regardless of the choice of the basis
functions. However, the matrix filling scheme will be most efficient if
the characteristics of the basis functions are taken into account. An
efficient matrix filling scheme for a MoM using RWGs was presented
in [5]. Different steps than described in [5] need to be taken to deal
with HOBs.

There is an advantage in using the polynomial basis functions
because the intermediate results obtained in evaluating the elements of
the impedance matrix for lower order can be used in the computation of
the elements when using higher order polynomials [2]. This advantage
improves the efficiency of the matrix filling for HOBs when employed
over wires and quadrilaterals and can be implemented quite easily in
both the serial and parallel codes.

For parallel matrix filling, an additional improvement can be
made to further increase the efficiency of the code. The objective
is to eliminate redundant calculations for each process. For the most
efficient code, this concept can be applied regardless of the choice of
the basis functions. However, the specific details for implementing
this are quite different for different basis functions. In the parallel
scheme using HOBs, redundant calculations related to the evaluation
of the potential functions can be avoided within each process by using
a flag, set true or false, for each order of the polynomial on a geometric
element. The corresponding pseudocode was given in [3].
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When dealing with the right-hand side of the matrix equation
in MoM, i.e., B in (2), the parallel matrix filling algorithm is much
easier to design as compared to the parallel filling algorithm for the
impedance matrix [2].

Load balancing is critical to obtain an efficient operation of a
parallel code. The parallel matrix filling scheme is able to achieve
the good load balancing. Little communication between processes
is necessary during the matrix filling, and parallel speedup can be
carefully tracked to ensure proper implementation.

3) Parallel Out-of-core Matrix Filling: The reason for developing
an out-of-core matrix filling algorithm is to enable one to solve large
matrix equations, where the impedance matrix may be too large to
be stored in the main memory (RAM) of the system. Compared with
the in-core matrix filling algorithm, where the matrix is filled once and
kept in the RAM, the main idea of designing an out-of-core algorithm
is to fill a portion of the matrix at a time and then write this portion
to the hard disk rather than keeping it in the RAM. Note that the
proposed out-of-core algorithm is different from the virtual memory;
the efficiency of the former can achieve 90% of the in-core algorithm [2],
while the efficiency of the latter is usually below 60%.

At the beginning of the out-of-core matrix filling algorithm, a
matrix of size N ×N is partitioned into a number of slabs, as shown
in Figure 2. The number of slabs Ns and the width of each slab Si are
determined by the nature of the application and the particular system
architecture of the computing platform on which the job is executed [2].

Before loops over geometric elements, each process goes through
a loop of slabs or blocks, from 1 to Ns. Each process calculates the

Figure 2. Data decomposition for storing an out-of-core matrix. An
N × N matrix is partitioned into Ns slabs and the width of the ith
slab is Si.
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elements for the Si, which represents the ith out-of-core slab and it
sets the global upper and lower bound. For example, for the first slab,
the global lower bound is 1 and the upper bound is S1. For the second
slab, the global lower bound is S1 + 1 and the upper bound is S1 + S2,
and so on. Each process fills a portion of the matrix in the same way as
the in-core filling algorithm. However, each process pays no attention
to the columns that fall outside the bound. After every process has
completed the desired action of filling the appropriate portion of the
matrix, a synchronous write is called to write the portion of the matrix
into a file. Then, each process enters the loop corresponding to the next
slab. This procedure avoids the calculation of most of the redundant
integrals related to the potential functions, which are used to calculate
the elements of the impedance matrix. This is accomplished by using
a flag for each order of the geometric element, as described previously
for the in-core matrix filling scheme.

By comparing with the in-core matrix filling algorithm, it can be
found that for each slab, the algorithm is exactly the same. Most of
the overhead for filling the out-of-core matrix, excluding that from the
in-core matrix calculation for an individual slab, comes from two parts:
1) calculation of the redundant integrals performed on each process, for
different elements of the impedance matrix, which belongs to different
slabs, and 2) writing the matrix elements to the hard disk.

4) Parallel Out-of-core Matrix Equation Solving: During the
procedure of finding the solution to the matrix equation, balancing
the computational load between all the processes is also important.
However, it is less easy to track compared with the parallel matrix
filling procedure, since an increase in the number of unknowns or the
number of processes executing the solution can increase the amount
of communication required between the processes. This increase in
communication will decrease the gains of parallel speedup. However,
as a rule of thumb, more processes typically means less wall clock time
for solving large problems, even though the overall parallel efficiency
may sometimes be increased by using fewer processes to solve the same
problem.

The solution of the matrix equation is essentially the same
regardless of the type of basis functions used for the MoM. The parallel
LU decomposition solver based on the ScaLAPACK library package
is described in Chapter 2 in [2]. Also, one can refer to Chapter 6
in [2] for a detail discussion about the iterative solvers based on the
conjugate gradient (CG) method. The computational complexity of
LU decomposition, scales with O(N3), is much higher than that of
CG type methods with O(N2), where N is the number of unknowns
in (2). However, in this paper, the parallel LU decomposition
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based on the ScaLAPACK is utilized as the parallel equation solver
rather than the parallel iterative CG method due to the fact that
the iterative CG method may encounter a divergence problem when
dealing with complex antennas composed of thin structures and various
materials. For the out-of-core matrix, the solution has an extra layer of
Input/Output (I/O) operations related to hard disks. The out-of-core
solver is designed to be able to manage very large files for each process
to write to and read from hard disks, as described in Chapter 2 in [2].

3.2. Parallelization of PO

Distributing to processes the computation of PO currents at all points
over the illuminated triangles is the main task to parallelize the PO
method. We use the same number of points over each triangle, and
hence we can partition triangles rather than points among processes.

What is necessary is to ensure that the triangles in the lit
PO region are partitioned equally to each process. This can be
realized by distributing the triangles in neighboring regions, either lit
or shadowed, to different processes. As depicted in Figure 3, take
120 triangles distributed over 4 processes for example, we distribute
triangles 1, 5, 9, . . . to process 0, triangles 2, 6, 10, . . . to process 1,
triangles 3, 7, 11, . . . to process 2 and triangles 4, 8, 12, . . . to process
3. This procedure can be realized by the following pseudocode,

If (Mod(tri− 1, Np) == this ID), tri ∈ this process,

where tri is the serial number of a given triangle, Np is the total number
of processes, and this ID is the process rank of this process.

When the number of triangles is much greater than the number
of processes, this scheme renders the number of triangles in the lit PO
region as well as the number of triangles in the shadowed PO region

Figure 3. An efficient distribution pattern of PO triangles that are
distributed to processes in a process-cyclic manner.
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nearly equal in each process and thus ensures good load balancing.
This nature of the distribution can also be viewed as a process-cyclic
scheme. There is little communication between processes due to the
neglect of the mutual interactions within the currents in the lit PO
region. Therefore, a near linear speedup can be obtained in the parallel
PO part of the parallel hybrid MoM-PO method.

The lit/shadowed determination is carried out through the Z-
buffer algorithm [23]. Z-buffer was originally developed to remove
hidden surfaces in computer graphics displays. Rius et al. first adopted
the usage of the Z-buffer in the GRECO code in the early 1990s to carry
out PO calculations [24]. In the algorithm, only the z-depth closest to
the observer (that is, the visible surface of the target) is stored in the
Z-buffer in pixel form. Note that the Z-buffer code used in this paper
is a serial code. However, it is very efficient to determine the lit and
shadowed regions for a large number of PO triangles.

4. NUMERICAL RESULTS

4.1. Comparison with the Commercial Software

To validate the accuracy and efficiency of the proposed hybrid MoM-
PO methodology, a parabolic reflector fed by a horn is simulated, which
is shown in Figure 4. The dimensions of the horn are illustrated in
Figure 5. The operating frequency of the antenna is 3.0 GHz.

The simulation is performed on a desktop computer, with a
1.87GHz CPU and 2GB of RAM. The radiation patterns obtained
using the proposed MoM-PO with ε = 10−3, the coupled MoM-PO in

Figure 4. Parabolic reflector
fed by a horn.

Figure 5. Dimensions of the horn.
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FEKO software [25], and the parallel higher-order MoM [3] are plotted
together in Figure 6. For the MoM-PO methods, the horn is in the
MoM region and the reflector is in the PO region. As shown in Figure 6,
the results agree with each other very well in the mainlobe region (i.e.,
0◦ ∼ 30◦ in the xoy plane and 60◦ ∼ 90◦ in the xoz plane). The
considerable disagreements between them occur in the deep shadow
region behind the reflector (i.e., 150◦ ∼ 180◦ in the xoy plane and
−90◦ ∼ −60◦ in the xoz plane).

For the PO regions, both the proposed and FEKO’s MoM-PO
methods have the same number of discretized triangles, i.e., 36,042.
While for the MoM regions, the numbers of unknowns are different
and listed in Table 1. Note that this example is simulated using only
one process for both the MoM-PO methods.

From Table 1, one can see that the HOBs adopted in the MoM
region result in less number of unknowns than RWGs. The total
computation time of the proposed method is only about 2.8% of the

(a) (b)

Figure 6. Gain of the parabolic reflector antenna: (a) xoy plane and
(b) xoz plane.

Table 1. Comparison between the proposed and FEKO’s MoM-PO
methods.

Algorithm
Number of
unknowns

Matrix
filling

time (s)

Matrix
equation
solving
time (s)

Voltage
iteration
time (s)

Proposed
MoM-PO 287 0.2 0.05 570.9

FEKO’s
MoM-PO 1640 20,185.3 1.5 –
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Figure 7. A 108 × 8 slotted waveguide array located above a square
metallic plate.

Figure 8. Dimensions of the 108 × 8 narrow-wall slotted waveguide
array.

time required by FEKO, which means that the proposed method is
about 35.7 times faster than FEKO’s MoM-PO method. This benefit
not only comes from the less number of unknowns by using HOBs,
but also due to the fact that the iterating voltage matrix is utilized
in the proposed method instead of modifying impedance matrix,
which greatly reduces the computational complexity. In contrast to
the proposed method, FEKO uses RWGs in the MoM region and
solves the complete MoM-PO matrix equation, as already discussed
in Section 2.2.

4.2. Description of the Parallel Computational Platform

The computational platform used in the following two examples is a
High-Performance Computing (HPC) cluster with one head node and
24 computing nodes. Each computing node has two quad-core Intel
Xeon E5310 1.6GHz EM64T processors (2× 4MB L2 Cache and 1066
MHz FSB), 4 GB RAM, and two 72 GB 15 K rpm SAS hard disks.
The nodes are connected with two Infiniband switches. The parallel
code is developed using the FORTRAN language based on Message
Passing Interface (MPI) and can be applied to both shared memory
and distributed memory systems.
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(a) (b) 

Figure 9. Radiation patterns of the 108× 8 array with and without
the metallic plate: (a) H-plane (φ = 18◦) and (b) E-plane (θ = 90◦).

4.3. A Slotted Waveguide Array with 108 × 8 Elements
over a Metallic Plate

This example is presented to demonstrate the parallel efficiency of
the proposed parallel hybrid MoM-PO method. Consider a slotted
waveguide array [26–28] with 108 × 8 narrow-wall inclined slots over
a square metallic plate with an edge length of 1.6 m. As shown in
Figure 7, the plate is in the xoy plane and its center is at the origin
of coordinate. The waveguides are oriented parallel to the y-axis and
located 0.16m above the plate. Each waveguide is a WR-90 waveguide
(X-band) with dimensions of 22.86mm × 10.16mm. The distance
between two neighboring waveguides is 20.95mm and the distance
between any two adjacent slots on each waveguide is 15.5mm. The
dimensions of the array are shown in Figure 8. One end of each
waveguide is terminated by a matched load [29], and the other end
is placed a feeding pin as an excitation in the waveguide. A −20 dB
Taylor amplitude distribution is utilized in the array feed.

The operating frequency of the array is 9.375GHz. In the parallel
hybrid MoM-PO analysis, the array is in the MoM region and the plate
is in the PO region. Figure 9 plots the radiation patterns of the array
over the plate as well as the patterns of the array without the plate.
The latter are computed by the parallel out-of-core MoM [3]. It is
seen from Figure 9 that the pattern is distorted by more than 10 dB
in the H-plane, especially in the region of 0◦ ∼ 75◦ and 105◦ ∼ 180◦
due to the existence of the plate, while the distortion is relatively little
in the E-plane, which is less than 5 dB in most angles. Note that the
H-plane is the φ = 18◦ cut plane, but not the xoz plane for the model
in Figure 7.
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Table 2. Comparison of the simulation of the 108 × 8 array over a
plate with respect to processes.

Number of
processes

(Process grid)

In-core
buffer

per process
(MB)

Matrix
filling

time (s)

Matrix
equation
solving
time (s)

Time for
one voltage
iteration (s)

24
(4× 6)

340.0 12,672.3 13,703.9 11,887.7

48
(6× 8)

340.0 6648.8 6589.1 6290.0

96
(8× 12)

340.0 3745.6 3622.8 3727.7

192
(12× 16)

340.0 1870.7 2259.8 2430.2

The surface of the slotted waveguide array is discretized into
bilinear patches and the plate into planar triangles. The number of
unknowns is 75,704 in the MoM region and the number of triangles is
143,692 in the PO region. We use seven Gauss integration points over
each triangle in the computation of the induced PO currents and set a
small number equal to 10−3 as the iteration convergence parameter ε
in (1). The iteration converges in 3 steps for this model (the iteration
is the voltage-based iteration as discussed in Section 2.2). The in-
core buffer and time for the parallel out-of-core hybrid solver by using
different processes are listed in Table 2. In cases of different processes,
the in-core buffer of the parallel out-of-core solver for each process is
the same, i.e., 340.0 MB. For this simulation, the proposed out-of-core
hybrid solver requires 11.3GB RAM (double precision) when using
24 processes, while an in-core hybrid solver would require at least
85.4GB RAM (double precision) [18]. If we use one process for this
simulation, we only need 340.0 MB RAM in theory, but the simulation
time could be very long in practice. The out-of-core technique allows
us to simulate this model by using a small amount of RAM, and hence
it is very favorable for solving problems in cases of lack of RAM.

Take the time for 24 processes as a reference, the parallel
efficiencies for this simulation are depicted in Figure 10. In the cases
of 48 and 96 processes, the parallel efficiencies for the matrix filling,
matrix equation solving and voltage iteration are higher than 80%.
In the case of 192 processes, the parallel efficiencies for the matrix
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Figure 10. Parallel efficiencies for the simulation of the 108× 8 array
over a metallic plate.

equation solving and voltage iteration decrease to a level below 80%.
Increase in the number of processes deteriorates the performance.
This is expected because the ratio of the communication volume to
computation increases with increase in the number of processes for
this problem with small size. However, as a rule of thumb, more
processes typically means less time for solving the problem. It should
be noted that the parallel efficiency for the matrix equation solving
exceeds 100% when using 48 processes. The reason is that process grids
have a significant impact on the efficiency, which have been discussed
in detail in our previous work [2].

4.4. A Slotted Waveguide Array with 108 × 20 Elements
over a Large Airplane

Consider next a realistic problem that a slotted waveguide array of
108 × 20 narrow-wall slots over a large airplane. The waveguide
parameters are the same as those of the 108 × 8 array analyzed in
Section 4.3 and the array model is shown in Figure 11. The airplane
model is 36 m long, 40 m wide and 10.5m high. The corresponding
electrical sizes of the model are 1125λ, 1250λ and 328.1λ, where λ is
the free-space wavelength at 9.375GHz. The array location on the
airplane is depicted in Figure 12. The array rotates in azimuth plane
around its vertical axis, scans in elevation plane by phase control, and
hence radiates and receives signals all around the structure.

This model is analyzed using the parallel hybrid MoM-PO method
with the array in the MoM region and the airplane in the PO region.
Intuitively, the airplane may have a great impact on the radiation
pattern of the array, especially for the case when the array rotates to
point the mainlobe towards the tail of the airplane. In this simulation,
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Figure 11. A large slotted waveguide array with 108× 20 elements.

Figure 12. The 108×20 slotted waveguide array over a large airplane.

(a) (b) 

Figure 13. Radiation patterns of the 108×20 array with and without
the airplane: (a) H-plane (φ = 0◦) and (b) E-plane (θ = 90◦).

a −40 dB Taylor amplitude distribution is utilized in the array feed
and the mainlobe direction is directed towards the tail. The radiation
patterns of the array over the airplane are shown in Figure 13, in
which the corresponding results of the array alone are also given. From
the comparison, it is clearly seen that the sidelobe levels of the array
over the airplane significantly increase in both the H-plane and E-
plane, especially in the E-plane. In specific, the first sidelobe level
increases from −35 dB to −15 dB in the E-plane, which is mainly due
to the effect of the airplane tail. The performance of the array is
degraded too much that we consider that this case does not meet the
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Table 3. Comparison of the simulation of the 108× 20 array over an
airplane with respect to processes.

Number of
processes

(Process grid)

In-core
buffer

per process
(MB)

Matrix
filling

time (s)

Matrix
equation
solving
time (s)

Time for
one voltage
iteration (s)

96
(8× 12)

340.0 56,857.0 50,259.7 185,465.4

192
(12× 16)

340.0 29,008.7 29,564.5 114,062.4

electromagnetic compatibility (EMC) requirements. In the situations
when the mainlobe is radiating along the nose and wing of the airplane,
the airplane may have less impact on the radiation properties of the
array.

The number of unknowns in the MoM region is 189,260 and
the number of triangles in the lit PO region is 2,685,168. In the
parallel simulation, seven Gauss points on each triangle are employed
in the computation of the induced PO currents. In this example,
the mainlobe of the array is rotated in azimuth to point towards
the tail. The iteration converges to the criterion of 10−3 with 1
step for this model (the iteration is the voltage-based iteration as
discussed in Section 2.2). The in-core buffer and time for the simulation
using 96 and 192 processes are listed in Table 3. Take the time for
96 processes as a reference, we can find the parallel efficiencies are
98.0%, 85.0% and 82.3% for the matrix filling, matrix equation solving
and voltage iteration with the usage of 192 processes, respectively.
For this simulation, the proposed out-of-core hybrid solver requires
63.8GB RAM (double precision) when using 192 processes, while an
in-core hybrid solver would require at least 533.7 GB RAM (double
precision) [18]. Therefore, the proposed parallel hybrid MoM-PO
method provides a very efficient solution to realistic problems of
complex antennas on large platforms but requires a small amount of
RAM.

5. CONCLUSION

An efficient parallel hybrid MoM-PO method with the out-of-core
technique is developed to solve extremely large on-board antenna
problems. The combination of the block matrix scheme for parallelizing
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MoM and the process-cyclic scheme for assigning PO workload ensures
good load balance. The proposed out-of-core technique allows us to
solve challenging problems with very low memory usage. Numerical
results confirm the accuracy and efficiency of the proposed parallel
technique and its applicability to the analysis of radiation from
on-board antenna systems including complex antennas and large
platforms.
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