Vol. 18
Latest Volume
All Volumes
PIERL 123 [2025] PIERL 122 [2024] PIERL 121 [2024] PIERL 120 [2024] PIERL 119 [2024] PIERL 118 [2024] PIERL 117 [2024] PIERL 116 [2024] PIERL 115 [2024] PIERL 114 [2023] PIERL 113 [2023] PIERL 112 [2023] PIERL 111 [2023] PIERL 110 [2023] PIERL 109 [2023] PIERL 108 [2023] PIERL 107 [2022] PIERL 106 [2022] PIERL 105 [2022] PIERL 104 [2022] PIERL 103 [2022] PIERL 102 [2022] PIERL 101 [2021] PIERL 100 [2021] PIERL 99 [2021] PIERL 98 [2021] PIERL 97 [2021] PIERL 96 [2021] PIERL 95 [2021] PIERL 94 [2020] PIERL 93 [2020] PIERL 92 [2020] PIERL 91 [2020] PIERL 90 [2020] PIERL 89 [2020] PIERL 88 [2020] PIERL 87 [2019] PIERL 86 [2019] PIERL 85 [2019] PIERL 84 [2019] PIERL 83 [2019] PIERL 82 [2019] PIERL 81 [2019] PIERL 80 [2018] PIERL 79 [2018] PIERL 78 [2018] PIERL 77 [2018] PIERL 76 [2018] PIERL 75 [2018] PIERL 74 [2018] PIERL 73 [2018] PIERL 72 [2018] PIERL 71 [2017] PIERL 70 [2017] PIERL 69 [2017] PIERL 68 [2017] PIERL 67 [2017] PIERL 66 [2017] PIERL 65 [2017] PIERL 64 [2016] PIERL 63 [2016] PIERL 62 [2016] PIERL 61 [2016] PIERL 60 [2016] PIERL 59 [2016] PIERL 58 [2016] PIERL 57 [2015] PIERL 56 [2015] PIERL 55 [2015] PIERL 54 [2015] PIERL 53 [2015] PIERL 52 [2015] PIERL 51 [2015] PIERL 50 [2014] PIERL 49 [2014] PIERL 48 [2014] PIERL 47 [2014] PIERL 46 [2014] PIERL 45 [2014] PIERL 44 [2014] PIERL 43 [2013] PIERL 42 [2013] PIERL 41 [2013] PIERL 40 [2013] PIERL 39 [2013] PIERL 38 [2013] PIERL 37 [2013] PIERL 36 [2013] PIERL 35 [2012] PIERL 34 [2012] PIERL 33 [2012] PIERL 32 [2012] PIERL 31 [2012] PIERL 30 [2012] PIERL 29 [2012] PIERL 28 [2012] PIERL 27 [2011] PIERL 26 [2011] PIERL 25 [2011] PIERL 24 [2011] PIERL 23 [2011] PIERL 22 [2011] PIERL 21 [2011] PIERL 20 [2011] PIERL 19 [2010] PIERL 18 [2010] PIERL 17 [2010] PIERL 16 [2010] PIERL 15 [2010] PIERL 14 [2010] PIERL 13 [2010] PIERL 12 [2009] PIERL 11 [2009] PIERL 10 [2009] PIERL 9 [2009] PIERL 8 [2009] PIERL 7 [2009] PIERL 6 [2009] PIERL 5 [2008] PIERL 4 [2008] PIERL 3 [2008] PIERL 2 [2008] PIERL 1 [2008]
2010-10-26
Tamm States of a Nonlinear Slab Sandwiched Between a Uniform Medium and a One-Dimensional Photonic Crystal
By
Progress In Electromagnetics Research Letters, Vol. 18, 115-124, 2010
Abstract
In this paper, the surface states (or so called Tamm states) of a nonlinear self-focusing slab sandwiched between a uniform medium and a one-dimensional photonic crystal has been investigated based on the first integral of nonlinear Helmholtz wave equation. The consider slabs can be a left-handed metamaterial or a conventional material. It is shown that the structure can support the Tamm states with two different transverse electric structure. In one kind, the surface waves has a hump at the surface of photonic crystal, and the other one has two humps. We reveal that in the case of self-focusing left-handed metamaterial slab, there is possibility for change of total flow's direction of surface waves by adjusting of the intensity of exciting electromagnetic field.
Citation
Zahra Eyni, Samad Roshan Entezar, Abdolrahman Namdar, and Habib Tajalli, "Tamm States of a Nonlinear Slab Sandwiched Between a Uniform Medium and a One-Dimensional Photonic Crystal," Progress In Electromagnetics Research Letters, Vol. 18, 115-124, 2010.
doi:10.2528/PIERL10072105
References

1. John, S., "Strong localization of photons in certain disordered dielectric superlattices," Phys. Rev. Lett., Vol. 58, 2486, 1987.
doi:10.1103/PhysRevLett.58.2486

2. Joannopoulos, J. D., R. D. Meade, and J. N. Winn, Photonic Crystals: Molding the Flow of Light, Princeton, Princeton University Press, NJ, 1995.

3. Rahimi, H., A. Namdar, S. Roshan Entezar, and H. Tajali, "Photonic transmission spectra in one-dimensional fibonacci multilayer structures containing single-negative metamaterials," Progress In Electromagnetics Research, Vol. 102, 15, 2010.
doi:10.2528/PIER09122303

4. Nozhat, N. and N. Granpayeh, "Specialty fibers designed by photonic crystals," Progress In Electromagnetics Research, Vol. 99, 225, 2009.
doi:10.2528/PIER09092309

5. Robertson, W. M., G. Arjavalingam, R. D. Meade, K. D. Brommer, A. M. Rappe, and J. D. Joannopoulos, "Observation of surface photons on periodic dielectric arrays," Opt. Lett., Vol. 18, 528, 1993.
doi:10.1364/OL.18.000528

6. Meade, R. D., K. D. Brommer, A. M. Rappe, and J. D. Joannopoulos, "Electromagnetic Bloch waves at the surface of a photonic crystal," Phys. Rev. B, Vol. 44, 10961, 1991.
doi:10.1103/PhysRevB.44.10961

7. Rahimi, H., "Backward tamm states in 1D single-negative metamaterial photonic crystals," Progress In Electromagnetics Research Letters, Vol. 13, 149, 2010.
doi:10.2528/PIERL09121305

8. Martorell, J., D. W. L. Sprung, and G. Morozov, "Surface TE waves on 1D photonic crystals," J. Opt. A: Pure Appl. Opt., Vol. 8, 630, 2006.
doi:10.1088/1464-4258/8/8/003

9. Namdar, A., I. V. Shadrivov, and Y. S. Kinshar, "Backward Tamm states in left-handed metamaterials," Apll. Phys. Lett., Vol. 89, 114104, 2006.
doi:10.1063/1.2352794

10. Boardman, A. D. and P. Egan, "Novel nonlinear surface and guided TE waves in asymmetric LHM waveguides," J. Opt. A: Pure Appl. Opt., Vol. 11, 114302, 2009.

11. Glushko, E. Y., "Analytical solution for the field in photonic structures containing cubic nonlinearity," Opt. Commun., Vol. 259, 342, 2006.
doi:10.1016/j.optcom.2005.08.065

12. Schürmann, H. W., V. S. Serov, and Y. V. Shestopalov, "TE-polarized waves guided by a lossless nonlinear three-layer structures," Phys. Rev. E, Vol. 58, 1040, 1998.
doi:10.1103/PhysRevE.58.1040

13. Shelby, R. A., D. R. Smith, and S. Schultz, "Experimental verification of a negative index of refraction," Science, Vol. 292, 77, 2001.
doi:10.1126/science.1058847

14. Chigrin, D. N., A. V. Lavrinenko, D. A. Yarotsky, and S. V. Gaponenko, "Observation of total omnidirectional reflection from a one-dimensional dielectric lattice," Appl. Phys. A: Mater. Sci. Process., Vol. 68, 25, 1999.
doi:10.1007/s003390050849

15. Chettiar, U. K., A. V., Kildishev, H. K. Yuan, W. Cai, S. Xiao, V. P. Drachev, and V. M. Shalaev, "Dual-band negative index metamaterial: Double negative at 813nm and single negative at 772 nm," Opt. Lett. , Vol. 32, 1671, 2007.
doi:10.1364/OL.32.001671

16. Boltasseva, A. and V. M. Shalaev, "Fabrication of optical negative-index metamaterials: Recent advances and outlook," Metamaterials, Vol. 2, 1, 2008.
doi:10.1016/j.metmat.2008.03.004

17. Zharov, A. A., I. V. Shadrivov, and Y. S. Kivshar, "Nonlinear properties of left-handed metamaterials," Phys. Rev. Lett., Vol. 91, 37401, 2003.
doi:10.1103/PhysRevLett.91.037401

18. Namdar, A., I. V. Shadrivov, and Y. S. Kinshar, "Excitation of backward Tamm states at an interface between a periodic photonic crystal and a left-handed metamaterials," Phys. Rev. A, Vol. 75, 053812, 2007.
doi:10.1103/PhysRevA.75.053812

19. Yariv, A., P. Yeh, and , Optical Waves in Layered Media, Wiley, New York, 1988.

20. Abramowitz, M. and A. S. Stegun, Handbook of Mahematical Function, Dover, New York, 1972.

21. Shadrivov, I. V., A. A. Sukhorukov, and Y. S. Kivshar, "Nonlinear surface waves in left-handed materials," Phys. Rev. E, Vol. 69, 016617, 2004.
doi:10.1103/PhysRevE.69.016617