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Abstract—In this paper, the surface states (so called Tamm states) of
a nonlinear self-focusing slab sandwiched between a uniform medium
and a one-dimensional photonic crystal is investigated based on the
first integral of the nonlinear Helmholtz wave equation. The considered
slab can be a left-handed or a conventional material. It is shown
that the structure can support the Tamm states with two different
transverse electric structures. In one structure, the surface waves have
one hump, and in the other one they have two humps at the surface
of photonic crystal. We show that in the case of the self-focusing left-
handed metamaterial slab, there is a possibility to change the direction
of the total energy flow of the surface waves by adjusting the intensity
of exciting electromagnetic field.

1. INTRODUCTION

There is a worldwide interest in photonic crystals (PCs) [1–4] because
they can modulate the propagation of photons and control the
properties of electromagnetic light in the same way that semiconductor
materials do in controlling the propagation of electrons. The advent of
PC materials spurred a lot of interest toward the existence of surface
modes at the interfaces of such materials [5–8]. The motivation for
studying the surface electromagnetic waves (SWs) in photonic band
gap (PBG) materials is their potential use in sensors, modulators, atom
mirrors, and in the enhancement of the surface nonlinear optical effects.
For applications that make use of SWs, PBG are appealing because it
is possible to engineer a sample that exhibits a band gap (and hence
SWs) within any frequency range irrespective of the intrinsic material
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properties. Furthermore, because PBG materials are constructed from
pure dielectrics, their loss is very low. The low loss is a desirable
property in SW applications because it leads to narrow coupling
resonances and high surface-electromagnetic (EM) fields. Recently the
linear SWs at the interface of a metamaterial and a semi-infinite 1DPC
have been studied in the Reference [9] based on the transfer matrix
method. Here, we study the properties of nonlinear type of SWs
that can be excited at the interface between a uniform LH material
and 1DPC capped by a nonlinear slab with finite thickness and we
investigate a possibility to control the dispersion properties of SWs by
adjusting the intensity of electromagnetic field. Our method is based
on the first integral of the nonlinear Helmholtz wave equation [10–12].
In this paper, we consider two different types of nonlinear LH and right-
handed (RH) slabs, and demonstrate a number of peculiar features
of the dispersion properties of the nonlinear TE-polarized SWs. The
results of this paper revealed that, there are two types of the SWs in
the modeled structure, one with maximum amplitude at the surface
of PC, and the other one with two-humps. Moreover it is shown that
there is a possibility to switch from the forwarded SWs to backwarded
ones only by adjusting the intensity of the exciting electromagnetic
field in the case of self-focusing LH nonlinear slab. We have also
compared our results with the Runge-Kutta method that validates
the above results. This paper is organized as follow: In Section 2, we
introduce the model of the system under consideration. In Section 3,
the intensity dependent properties of the nonlinear SWs are studied.
Finally, Section 4 concludes the paper.

2. THEORETICAL MODEL

In what follows, we study the TE-polarized SWs in a nonlinear
LH or RH slab sandwiched between a uniform medium and a one-
dimensional photonic crystal. We choose a coordinate system in which
the layers have normal vector along OZ. In the 1DPC, each layer is
characterized by dielectric permittivity εi, magnetic permeability µi

and the thickness di (i = 1, 2). In the chosen coordinate system the
slab with thickness dc extends from z = −dc to 0 and the uniform LH
material that is characterized by ε0 = −1 and µ0 = −1 is located to
the left of z = −dc. The order of magnitude of the lattice constant
d = (d1+d2) depends on the desired spectral range. For the microwave
region with frequency around 5–12 GHz (the suitable range for the left-
handed metamaterials (LHM) [13]), d is on the order of centimeter,
while it can be on the order of micrometers to nanometers for the
optical range (e.g., see the experimental work of Ref. [14]). On the
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other hand, because of the recent developments in designing negative
refractive index materials at the optical range [15, 16] the use of the
LHM as a homogeneous medium is realizable. The nonlinear slab is
characterized by µc and a nonlinear dielectric permittivity:

εNL = εc + α|Ec(z)|2 (1)

Here εc is the linear part of the relative dielectric permittivity, Ec(z)
is the electric field in the slab and parameter α describes Kerr-type
nonlinearity. For a conventional (RH) material dielectric, positive α
refers to a self-focusing nonlinear material while a self-focusing LH
medium corresponds to a negative α [17]. Below, both types of LH
and RH nonlinear slabs are considered and for simplicity it is assumed
that the containing media are lossless, homogeneous and isotropic. For
definiteness, we suppose that the slab possesses self-focusing property;
i.e., α < 0 for LH slab and α > 0 for RH slab. We consider propagation
of monochromatic TE-polarized waves as

E = Ey(z)ei(kxx−ωt)êy (2)

H = (Hx(z)êx + Hz(z)êz)ei(kxx−ωt) (3)

where ω is the angular frequency, k = ω/c is the vacuum wave
number, kx = ω

c β and β = n′ sin θ0 where θ0 is the angle of the
incidence measured from the normal and n′ is the refractive index
of a dense medium used to excite the SWs [18]. The stationary
solution of the TE wave equation for the nonlinear slab is of the
form Ey(z) = Ec(z) exp(i(kβx − ωt)) which the amplitude field in
the nonlinear slab is modulated along z due to the nonlinearity. Using
this form of the stationary solution with µ(z) = µc and ε(z) = εNL we
reach [

∂2

∂z2
+

∂2

∂x2
+

(
ω2

c2

)
µc(εc + α|Ec(z)|2)

]
Ec(z) = 0 (4)

It is well known that surface modes correspond to the localized
solutions with the field E decaying from the interface in both
directions. In the left-side homogeneous medium the fields are decaying
provided β >

√
ε0µ0. So, the solution of the scalar Helmholtz-type

wave equation in a homogeneous medium(z ≤ −dc) that satisfies the
boundary conditions at infinity is

Ed(z) = E0e
q0(z+dc) (5)

where E0 is the electric field amplitude at z = −dc, q0 = k
√

β2 − n2
0

and n0 =
√

ε0µ0. In the periodic structure, the waves are the Bloch
modes

E(z) = ψ(z) exp(iKbz) (6)
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where Kb is the Bloch wave number and ψ(z) is the Bloch function
which is periodic with the period of the photonic structure [19]. In
the periodic structure, the waves will be decaying provided that Kb is
complex and this condition defines the spectral band gaps of an infinite
multilayered structure. In the next stage, we investigate the solution
of the nonlinear wave equation in two types of the nonlinear slabs, LH
material and RH ones based on the first integral of the basic equation
technique. So, Eq. (4) can be integrated once to give

(E′
c)

2 − k2
cE

2
c + k2µcα/2E4

c = Cc (7)
Here, the prime represents the differentiation with respect to z, k2

c =
k2(β2− εcµc) and Cc is the constant of integration (with respect to z).
The quantity Cc which has arisen from the first integral is determined
by applying the TE boundary conditions at the interfaces of the slab.

Ed|z=−dc = Ec|z=−dc = E0;
1
µ0

∂Ed

∂z
|z=−dc =

1
µc

∂Ec

∂z
|z=−dc (8)

Ec|z=0 = E1|z=0 = Eb;
1
µc

∂Ec

∂z
|z=0 =

1
µ1

∂E1

∂z
|z=0 (9)

where E0, Eb are the values of the electric field at the lower
and upper boundaries of the slab and E1 is the electric field in
the first layer of PC [19]: E1(z) = Beik1zz + (λ − A)e−ik1zz.
Here, A and B are the elements of the transfer matrix of
the PC [19]: A = eik1d1

(
cos k2d2 + i

2

(
k1
k2

+ k2
k1

)
sin k2d2

)
, B =

eik1d1 i
2

(
k2
k1
− k1

k2

)
sin k2d2, where ki = kiz = k

√
n2

i − β2 (i = 1, 2) and
λ is the eigenvalue of the transfer matrix in the photonic band gap:
λ = Re(A)±

√
Re(A)2 − 1.

Inserting Eqs. (8), (9) into Eq. (7) give

γ0

(
µcq

2
0 −

k2
cµ

2
0

µc
+

k2µ2
0γ0

2

)
= γb

(
µck

2
1zR̃

2 − k2
cµ

2
1

µc
+

k2µ2
1γb

2

)
(10)

where γ0 = α|E0|2, γb = α|Eb|2, R̃ = ik1z
B−(λ−A)
B+(λ−A) , k1z = k

√
n2

1 − β2.
Eq. (10) determines the dispersion relation k = k(β) for the nonlinear
surface waves. The solution to Eq. (7) can be found prior to the
integration via expressing Eq. (7) in the form

∂Ec

∂z
= k

√
|µc||α|/2

[
E2

c +
−k2

c +
√

k4
c + 2Cc|µc|k2|α|
|µc|k2|α|

] 1
2

×
[
−E2

c +
k2

c +
√

k4
c + 2cc|µc|k2|α|
|µc|k2|α|

] 1
2

(11)
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The factors on the right-hand side of Eq. (11) are real, so the solutions
can be written in terms of the Jacobi functions sd(p|m), where p is the
relevant real argument and m is the relevant Jacobi parameter [10, 20].
The Jacobi elliptic functions satisfy nonlinear first order differential
equations like Eq. (11). One can thus solve all such equations exactly,
in closed form, in terms of elliptic functions. Elliptic functions open up
a window of solvable nonlinear (polynomial) differential equations, all
of which are related to the physical problems and physical phenomena.
There are, in fact, 12 Jacobi functions and their selection depends
upon the signs of Cc and k2

c . Therefore we must determine the signs
of Cc and k2

c in the band gap of the photonic crystal. Our calculations
showed that the sign of Cc in the first photonic band gap with both
types of slabs is positive and the sign of k2

c is positive (negative) in
the case of LH (RH) slab. Accordingly, the solutions of the nonlinear
wave equation that satisfy the TE boundary conditions, after second
integration have the following forms for the case of LH and RH slabs,
respectively [20]:

Ec1(z)=sd
(
k
√
|µc||α|(a2

1 + b2
1)

1
2 (z + dc) + z01|m1

)
(a2

1 + b2
1)

1/2 (12)

Ec2(z)=sd
(
z02 − k

√
µcα(a2

2 + b2
2)

1
2 (z + dc)|m2

)
(a2

2 + b2
2)

1/2 (13)

where a2
1 = −k2

c+
√

k4
c+2Cc|µc|k2|α|
|µc|k2|α| , b2

1 = k2
c+
√

k4
c+2Cc|µc|k2|α|
|µc|k2|α| , z01 =

sd−1(E0

√
a2
1+b21

a1b1
|m1), m1 = b21

(a2
1+b21)

, a2
2 = |k2

c |+
√
|k2

c |2+2Ccµck2α

µck2α
, b2

2 =
−|k2

c |+
√
|k2

c |2+2Ccµck2α

µck2α
. z02 = sd−1(E0

√
a2
2+b22

a2b2
|m2) and m2 = b22

(a2
2+b22)

.
Here, sd is one of the Jacobi elliptic functions, z0i is the second constant
of integration and mi is the nonlinear period of the Jacobi elliptic
function (i = 1, 2).

3. RESULTS AND DISCUSSION

In this section, we use the dispersion relation of Eq. (10) and Eqs. (12)
and (13) to study the effect of the dimensionless parameter γ0 on the
dispersion properties of the SWs. The dispersion properties of the
nonlinear SWs are plotted in Fig. 1 in the first spectral gap on the plane
(k, β) for different values of the dimensionless parameter γ0. From
Fig. 1, it is clear that the dispersion curves of the SWs move to the
upper (lower) edge of the band gap by increasing the parameter γ0 in
the case of LH (RH) slab. So, the dispersion properties of SWs depend
on the parameter γ0. Our investigations reveal that the mode structure
of the SWs depends on the parameters γ0 in the case of nonlinear LH
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Figure 1. Dispersion curves of the SWs for (a) the LH slab with
µc = −1, εc = −1 and (b) the RH slab with µc = 1, εc = 4 in the
first spectral gap of the PC for the cases of |γ0| = 0.5 (solid lines),
|γ0| = 0.2 (dashed lines) and |γ0| → 0 (dotted lines). Here, the shaded
area shows the band gap of PC and the used parameters are: dc = 2d1,
d1 = 1 cm, d2 = 1.65 cm, n1 = 2, µ1 = 1, n2 = 1.5 and µ2 = 1.
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Figure 2. The transverse profile of SWs vs coordinate z for the
nonlinear LH slab sandwiched between the uniform medium and the
one-dimensional photonic crystal with (a) |γ0| = 0.2 (two-humped
structure) and (b) γ0 → 0 (one-humped structure). Here, we used
dc = 2d1 and β = 1.211. The insets show blow-up regions of profiles
at the surface of PC.

slab. To show the modes with different structures the transverse profile
of some typical SWs corresponding to Fig. 1 are plotted in Fig. 2 as
a function of coordinate z. As one can see from Fig. 2(a), the modes
corresponding to |γ0| = 0.2 have a two-humps structure around the
interface while the modes corresponding to |γ0| = 0.0 have a one-
humped structure [see Fig. 2(b)]. Moreover, the structure supports
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only the SW modes without any nodes within the slab (order of zero
modes). Investigation of Fig. 1(b) shows that the RH slab can support
the SWs with one or more nodes, the so-called order 1 or higher orders
of SWs depending on the thicknesses of the nonlinear slab (see Fig. 3).
We have also compared our results based on the first integral method
with Runge-Kutta method. Our studies show good agreement between
the analytical and the numerical results. The corresponding results are
presented in Fig. 4. As was recently shown, the direction of the total
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Figure 3. The transverse profile of order 1 SWs vs coordinate z for
the nonlinear RH slab sandwiched between the uniform medium and
the one-dimensional photonic crystal with dc = 2d1, γ0 = 0.2 and
β = 1.211. The other parameters are the same as Fig. 1.
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Figure 4. Dispersion curves of the SWs for (a) the LH slab with
µc = −1, εc = −1 and (b) the RH slab with µc = 1, εc = 4 in
the first spectral gap of the PC in the case of |γ0| = 0.2. Here, the
dashed and marked lines show dispersion from Jacobi elliptic functions
and Runge-Kutta method, respectively. The other parameters are the
same in Fig. 1.
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Figure 5. Total energy flow of the SWs for (a) the LH slab with
µc = −1, εc = −1 and (b) the RH slab with µc = 1, εc = 4 vs β in
the cases of |γ0| = 0.5 (solid lines), |γ0| = 0.2 (dashed lines), |γ0| → 0
(dotted lines). The other parameters are the same as Fig. 1.

energy flow of the SWs can be forward or backward in the presence of
LHM [21]. Due to the localized nature of the SWs, the total energy
flow of the SWs normal to the interface is zero. So, it is interesting to
study the total energy flow of the nonlinear SWs along the interface. To
demonstrate the backward or forward nature of the nonlinear surface
modes we plotted the total energy flow of the modes as a function
of β for different values of the parameter |γ0| (or different exciting
intensity) in Fig. 5. As it is clear from Fig. 5(a), the energy flow of
the SWs are in the backward or the forward directions at the region
1.065 < β < 1.177 depending on the intensity. So, the forward SWs
can be switched to the backward ones or vice versa by adjusting the
intensity of the exciting field in the case of LH slab.

4. CONCLUSION

We have analytically studied the nonlinear TE-polarized SWs of a
nonlinear LH or RH slab sandwiched between a homogeneous LH
medium and a semi-infinite 1DPC. Our method is based on the first
integral of the nonlinear Helmholtz wave equation. We have shown that
these structures can support SWs with different transverse profiles.
The intensity dependent properties of the nonlinear SWs for both cases
of the LH or the RH slabs have been studied. It is shown that in the
case of the self-focusing LH slab there is a possibility of switching
between the forward and the backward SWs by varying the intensity
of the electromagnetic field.
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