Department of Electrical and Computer Engineering
The University of Alabama
USA
HomepageDepartment of Electrical and Computer Engineering
The University of Alabama
USA
HomepageDepartment of Electrical and Computer Engineering
The University of Alabama
USA
HomepageDepartment of Electrical and Computer Engineering
The University of Alabama
USA
HomepageDepartment of Electrical and Computer Engineering
The University of Alabama
USA
HomepageDepartment of Electrical Engineering
Wichita State University
USA
Homepage1. Bhatti, R. A., J. H. Choi, and S. O. Park, "Quad-band MIMO antenna array for portable wireless communications terminals," IEEE Antennas and Wireless Propagation Letters, Vol. 8, 129-132, 2009.
doi:10.1109/LAWP.2008.2012274
2. Chung, K. and J. H. Yoon, "Integrated MIMO antenna with high isolation characteristic," Electronics Letters, Vol. 43, No. 4, 199-201, 2007.
doi:10.1049/el:20070012
3. Vaughan, R. G., "Two-port higher mode circular microstrip antenna," IEEE Trans. Antennas Prop., Vol. 36, 309-321, Mar. 1988.
doi:10.1109/8.192112
4. Vaughan, R. G. and J. B. Anderson, "A multiport patch antenna for mobile communications," Proc. 14th European Microwave Conference, 607-612, 1984.
doi:10.1109/EUMA.1984.333391
5. Forenza, A., R. W. Heath, and Jr., "Benefit of pattern diversity via two-element array of circular patch antennas in indoor clustered MIMO channels," IEEE Trans. on Comm., Vol. 54, 943-954, May 2006.
doi:10.1109/TCOMM.2006.873978
6. Forenza, A., R. W. Heath, and Jr., "Optimization methodology for designing 2-CPAs exploiting pattern diversity in clustered MIMO channels," IEEE Trans. on Comm., Vol. 56, No. 10, 1748-1759, 2008.
doi:10.1109/TCOMM.2008.060582
7. Bae, S., Y. K. Hong, and A. Lyle, "Effect of Ni-Zn ferrite on bandwidth and radiation efficiency of embedded antenna for mobile phone," J. Appl. Phys., Vol. 103, 07E929, 2008.
8. Bae, S., Y. K. Hong, J. J. Lee, J. Jalli, G. S. Abo, W. M. Sung, G. H. Kim, S. H. Park, J. S. Kum, and H. M. Kwon, "Co2Z hexaferrite T-DMB antenna for mobile phone applications," IEEE Trans. Magn., Vol. 45, No. 10, 4199-4203, 2009.
doi:10.1109/TMAG.2009.2022412
9. Kim, Y., S. Bae, and J. R. Kim, "Effect of ferrite substrate on antenna miniaturization," J. Korean Phys. Soc., Vol. 52, 127-141, 2008.
doi:10.3938/jkps.52.127
10. Mahmud, S. T., A. K. M. Akther Hossain, A. K. M. Abdul Hakim, M. Seki, T. Kawai, and H. Tabata, "Influence of microstructure on the complex permeability of spinel type Ni-Zn ferrite," J. Magn. Magn. Matr., Vol. 305, 269-274, 2006.
doi:10.1016/j.jmmm.2006.01.012
11. Kulkarni, D. C., S. P. Patil, and V. Puri, "Properties of NixZn(1-x)Fe2O4 thick films at microwave frequencies," Microelectronics J., Vol. 39, 248-252, 2008.
doi:10.1016/j.mejo.2007.12.008
12. Tsutaoka, T., T. Kasagi, and K. Hatakeyama, "Magnetic field effect on the complex permeability for a Mn-Zn ferrite and its composite materials," J. Euro. Ceramic Soc., Vol. 19, 1531-1535, 1999.
doi:10.1016/S0955-2219(98)00474-9
13. Thakur, A., P. Mathur, and M. Singh, "Study of dielectric behavior of Mn-Zn nano ferrites," J. Phys. and Chem. of Solids, Vol. 68, 378-381, 2007.
doi:10.1016/j.jpcs.2006.11.028
14. Zhao, H., J. Zhou, and L. Li, "Complex permeability spectra of Co-substituted lithium zinc perminvar ferrite," Key Eng. Mat., Vol. 368--372, 591-593, 2008.
doi:10.4028/www.scientific.net/KEM.368-372.591
15. Ramesh, B. and D. Ravinder, "Electrical properties of Li-Mn ferrites," Mat. Letters, Vol. 62, 2043-2046, 2008.
doi:10.1016/j.matlet.2007.11.010
16. Bush, G. G., "The complex permeability of a high purity yttrium iron garnet sputtered thin film," J. Appl. Phys., Vol. 73, 6310-6311, 1993.
doi:10.1063/1.352680
17. Krupka, J., S. A. Gabelich, K. Derzakowski, and B. M. Pierce, "Comparison of split post dielectric resonator and ferrite disc resonator techniques for microwave permittivity measurements of polycrystalline yttrium iron garnet," Meas. Sci. Technol., Vol. 10, 1004-1008, 1999.
doi:10.1088/0957-0233/10/11/305
18. Kim, C. W. and J. G. Koh, "A study of synthesis of NiCuZn ferrite sintering in low temperature by metal nitrates and its electromagnetic property," J. Magn. Magn. Matr., Vol. 257, 355-368, 2003.
doi:10.1016/S0304-8853(02)01234-9
19. Wang, H., J. Liu, W. Li, J. Wang, L. Wang, L. Song, S. Yuan, and F. Li, "Structural, dynamic magnetic and dielectric properties of Ni0.15Cu0.2Zn0.65Fe2O4 ferrite produced by NaOH co-precipitation method," J. Alloys and Compounds, Vol. 461, 373-377, 2008.
doi:10.1016/j.jallcom.2007.06.095
20. Shepherd, P., K. K. Mallick, and R. J. Green, "Magnetic and structural properties of M-type barium hexaferrite prepared by co-precipitation," J. Magn. Magn. Matr., Vol. 311, 683-692, 2007.
doi:10.1016/j.jmmm.2006.08.046
21. Mallick, K. K., P. Shepherd, and R. J. Green, "Dielectric properties of M-type barium hexaferrite prepared by co-precipitation," J. of Euro. Ceramic Soc., Vol. 27, 2045-2052, 2007.
doi:10.1016/j.jeurceramsoc.2006.05.098
22. Bae, S., Y. K. Hong, J. J. Lee, J. Jalli, G. S. Abo, A. Lyle, W. M. Seong, and J. S. Kum, "Low loss Z-type barium ferrite (Co2Z) for T-DMB antenna application," J. Appl. Phys., Vol. 105, 07A515, 2009.
23. Bae, S., Y. K. Hong, J. J. Lee, J. Jalli, G. S. Abo, A. Lyle, I. T. Nam, W. M. Seong, J. S. Kum, and S. H. Park, "New synthetic route of Z-type (Ba3Co2Fe24O41) hexaferrite particles," IEEE Trans. Magn., Vol. 45, No. 6, 2557-2560, 2009.
doi:10.1109/TMAG.2009.2018883
24. Bai, Y., J. Zhou, Z. Gui, and L. Li, "Magnetic properties of Cu, Zn-modified Co2Y hexaferrites," J. Magn. Magn. Matr., Vol. 246, 140-144, 2002.
doi:10.1016/S0304-8853(02)00040-9
25. Bai, Y., J. Zhou, Z. Gui, L. Li, and L. Qiao, "The physics properties of Bi-Zn codoped Y-type hexagonal ferrite," J. Alloys and Compounds, Vol. 450, 412-416, 2008.
doi:10.1016/j.jallcom.2006.10.122
26. Lin, C.-S., C.-C. Hwang, T.-H. Huang, G.-P. Wang, and C.-H. Peng, "Fine powders of SrFe12O19 with SrTiO3 additive prepared via a quasi-dry combustion synthesis route," Mat. Sci. and Eng. B, Vol. 139, 24-36, 2007.
doi:10.1016/j.mseb.2007.01.053
27. Balanis, C. A., Antenna Theory: Analysis and Design, 2nd Ed., Wiley, 1982.
28. Ikonen, P. M. T., K. N. Rozanov, A. V. Osipov, P. Alitalo, and S. A. Tretyakov, "Magnetodielectric substrates in antenna miniaturization: Potential and limitations," IEEE Trans. on Ant. and Prop., Vol. 54, 3391-3399, Nov. 2006.
29. Hansen, R. C. and M. Burke, "Antenna with magneto-dielectrics," Microwave Opt. Technol. Lett., Vol. 26, No. 2, 75-78, 2000.
doi:10.1002/1098-2760(20000720)26:2<75::AID-MOP3>3.0.CO;2-W
30. Chu, L. J., "Physical limitations of omni-directional antennas," J. Appl. Phys., Vol. 19, 1163-1175, 1948.
doi:10.1063/1.1715038
31. Mclean, J. S., "A re-examination of the fundamental limits on the radiation Q of electrically small antennas," IEEE Trans. on Ant. and Prop., Vol. 44, 672-675, May 1996.
doi:10.1109/8.496253
32. Ziolkowski, R. W. and A. Erentok, "At and below the Chu limit: Passive and active broad bandwidth metamaterial-based electrically small antennas," IET Microw., Ant. and Prop., Vol. 1, 116-128, Feb. 2007.
doi:10.1049/iet-map:20050342
33. Caimi, F. M., Theoretical size constraints for antennas based on quality factor Q, Released document by IEEE P802.15 working group, IEEE 802:15 < 02/295 >, July 2002.
34. Walser, R. M., W. Win, and P. M. Valanju, "Shape-optimized ferromagnetic particles with maximum theoretical microwave susceptibility," IEEE Trans. Magn., Vol. 34, 1390-1392, 1998.
doi:10.1109/20.706558
35. Blanch, S., J. Romeu, and I. Corbella, "Exact representation of antenna system diversity performance from input parameter description," Electron Lett., Vol. 39, 705, 2003.
doi:10.1049/el:20030495