Vol. 24
Latest Volume
All Volumes
PIERB 109 [2024] PIERB 108 [2024] PIERB 107 [2024] PIERB 106 [2024] PIERB 105 [2024] PIERB 104 [2024] PIERB 103 [2023] PIERB 102 [2023] PIERB 101 [2023] PIERB 100 [2023] PIERB 99 [2023] PIERB 98 [2023] PIERB 97 [2022] PIERB 96 [2022] PIERB 95 [2022] PIERB 94 [2021] PIERB 93 [2021] PIERB 92 [2021] PIERB 91 [2021] PIERB 90 [2021] PIERB 89 [2020] PIERB 88 [2020] PIERB 87 [2020] PIERB 86 [2020] PIERB 85 [2019] PIERB 84 [2019] PIERB 83 [2019] PIERB 82 [2018] PIERB 81 [2018] PIERB 80 [2018] PIERB 79 [2017] PIERB 78 [2017] PIERB 77 [2017] PIERB 76 [2017] PIERB 75 [2017] PIERB 74 [2017] PIERB 73 [2017] PIERB 72 [2017] PIERB 71 [2016] PIERB 70 [2016] PIERB 69 [2016] PIERB 68 [2016] PIERB 67 [2016] PIERB 66 [2016] PIERB 65 [2016] PIERB 64 [2015] PIERB 63 [2015] PIERB 62 [2015] PIERB 61 [2014] PIERB 60 [2014] PIERB 59 [2014] PIERB 58 [2014] PIERB 57 [2014] PIERB 56 [2013] PIERB 55 [2013] PIERB 54 [2013] PIERB 53 [2013] PIERB 52 [2013] PIERB 51 [2013] PIERB 50 [2013] PIERB 49 [2013] PIERB 48 [2013] PIERB 47 [2013] PIERB 46 [2013] PIERB 45 [2012] PIERB 44 [2012] PIERB 43 [2012] PIERB 42 [2012] PIERB 41 [2012] PIERB 40 [2012] PIERB 39 [2012] PIERB 38 [2012] PIERB 37 [2012] PIERB 36 [2012] PIERB 35 [2011] PIERB 34 [2011] PIERB 33 [2011] PIERB 32 [2011] PIERB 31 [2011] PIERB 30 [2011] PIERB 29 [2011] PIERB 28 [2011] PIERB 27 [2011] PIERB 26 [2010] PIERB 25 [2010] PIERB 24 [2010] PIERB 23 [2010] PIERB 22 [2010] PIERB 21 [2010] PIERB 20 [2010] PIERB 19 [2010] PIERB 18 [2009] PIERB 17 [2009] PIERB 16 [2009] PIERB 15 [2009] PIERB 14 [2009] PIERB 13 [2009] PIERB 12 [2009] PIERB 11 [2009] PIERB 10 [2008] PIERB 9 [2008] PIERB 8 [2008] PIERB 7 [2008] PIERB 6 [2008] PIERB 5 [2008] PIERB 4 [2008] PIERB 3 [2008] PIERB 2 [2008] PIERB 1 [2008]
2010-08-07
Dual Band Switchable Metamaterial Electromagnetic Absorber
By
Progress In Electromagnetics Research B, Vol. 24, 121-129, 2010
Abstract
This paper presents the design, fabrication and measurement of a dual band switchable metamaterial electromagnetic absorber. The unit cell of the metamaterial consists of dipole mode electric resonators coupled by microwave diodes on one side of a dielectric substrate and metallic ground plane on the other side. Simulation and measurement results show that by forward or reverse biasing the diodes so as to change the coupling between the resonators, the absorber can be dynamically switched to operate in two adjacent frequency bands with nearly perfect peak absorption. Field distribution reveals the physical origin of the switchable performance based on the dipole mode of the electric resonator in the unit cell. It is also demonstrated that the frequency difference between the two bands can be tuned by adjusting the loading positions of the diodes with unchanged high absorption, which helps to design absorbers with specific switchable working frequencies in practical applications.
Citation
Bo Zhu, Ci Huang, Yijun Feng, Junming Zhao, and Tian Jiang, "Dual Band Switchable Metamaterial Electromagnetic Absorber," Progress In Electromagnetics Research B, Vol. 24, 121-129, 2010.
doi:10.2528/PIERB10070802
References

1. Knott, E. F., J. F. Shaeffer, and M. T. Tuley, Radar Cross Section, Artech House, 1985.

2. Hatakeyama, K. and T. Inui, "Electromagnetic wave absorber using ferrite absorbing material dispersed with short metal fibers," IEEE Trans. Magn., Vol. 20, No. 5, 1261-1263, September, 1984.
doi:10.1109/TMAG.1984.1063424

3. Matsumoto, M. and Y. Miyata, "Thin electromagnetic wave absorber for quasi-microwave band containing aligned thin magnetic metal paticles," IEEE Trans. Magn., Vol. 33, No. 6, 4459-4464, November, 1997.
doi:10.1109/20.649882

4. Salisbury, W. W., Absorbent Body of Electromagnetic Waves, US Patent 2599944, June 10, 1952.

5. Munk, B. A., Frequency Selective Surfaces, Theory and Design, Wiley, 2000.

6. N. I., S. Sajuyigbe, J. J. Mock, D. R. Smith, W. J. Padilla, "Perfect metamaterial absorber," Phys. Rev. Lett., Vol. 100, No. 20, 207402-1-207402-4, May, 2008.

7. Tao, H., N. I. Landy, C. M. Bingham, X. Zhan, R. D. Averitt, and W. J. Padilla, "A metamaterial absorber for the terahertz regime: Design, fabrication and characterization," Opt. Express, Vol. 16, No. 10, 7181-7188, May, 2008.
doi:10.1364/OE.16.007181

8. Landy, N. I., C. M. Bingham, T. Tyler, N. Jokerst, D. R. Smith, and W. J. Padilla, "Design, theory, and measurement of a polarization-insensitive absorber for terahertz imaging," Phys. Rev. B, Vol. 79, No. 12, 125104-1-125104-6, March, 2009.
doi:10.1103/PhysRevB.79.125104

9. Zhu, B., Z. Wang, Z. Yu, Q. Zhang, J. Zhao, Y. Feng, and T. Jiang, "Planar metamaterial microwave absorber for all wave polarizations," Chin. Phys. Lett., Vol. 26, No. 11, 114102-1-114102-4, November, 2009.

10. Wang, B., T. Koschny, and C. M. Soukoulis, "Wide-angle and polarization-independent chiral metamaterial absorber," Phys. Rev. B, Vol. 80, No. 3, 033108-1-033108-4, July, 2009.

11. Wang, J. F., S. B. Qu, Z. T. Fu, H. Ma, Y. M. Yang, and X. Wu, "Three-dimensional metamaterial microwave absorbers composed of coplanar magnetic and electric resonators," Progress In Electromagnetic Research Letters, Vol. 7, 15-24, 2009.

12. Huang, R., Z. W. Li, L. B. Kong, L. Liu, and S. Matitsine, "Analysis and design of an ultra-thin metamaterial absorber," Progress In Electromagnetic Research B, Vol. 14, 407-429, 2009.
doi:10.2528/PIERB09040902

13. Tennant, A. and B. Chambers, "A single-layer tunable microwave absorber using an active FSS," IEEE Microw. Wirel. Compon. Lett., Vol. 14, No. 1, 46-47, January, 2004.
doi:10.1109/LMWC.2003.820639

14. Huang, Z., J. Xue, Y. Hou, J. Chu, and D. H. Zhang, "Optical magnetic response from parallel plate metamaterials," Phys. Rev. B, Vol. 74, No. 19, 193105-1-193105-4, November, 2006.

15. Azad, A. K., A. J. Taylor, E. Smirnova, and J. F. O'Hara, "Characterization and analysis of terahertz metamaterials based on rectangular split-ring resonators," Appl. Phys. Lett., Vol. 92, No. 1, 011119-1-011119-3, January, 2008.
doi:10.1063/1.2829791

16. Chen, H., W. J. Padilla, J. M. O. Zide, A. C. Gossard, A. J. Taylor, and R. D. Averitt, "Active terahertz metamaterial devices," Nature, Vol. 444, No. 30, 597-600, November, 2006.