1. Shankar, V., "A gigaflop performance algorithm for solving Maxwell's equations of electromagnetics," AIAA Paper, 584-590, 91--1578, June 1991.
2. Chatterjee, A. and R. S. Myong, "Efficient implementation of higher-order finite volume time-domain method for electrically large scatterers," Progress In Electromagnetics Research B, Vol. 17, 233-254, 2009.
doi:10.2528/PIERB09073102
3. Shang, J. S., "Characteristic-based algorithms for solving the Maxwell equations in the time domain," IEEE Antennas and Propagation Society Magazine, Vol. 37, No. 3, 15-25, 1995.
doi:10.1109/74.388807
4. Chatterjee, A. and A. Shrimal, "Essentially nonoscillatory finite volume scheme for electromagnetic scattering by thin dielectric coatings," AIAA Journal, Vol. 42, No. 2, 361-365, 2004.
doi:10.2514/1.553
5. Yee, K., "Numerical solutions of initial boundary value problems involving Maxwell's equations in isotropic media," IEEE Transactions on Antennas and Propagation, Vol. 14, 302-307, 1966.
6. Brandt, A., "Multi-level adaptive solutions to boundary-value problems," Mathematics of Computation, Vol. 31, No. 138, 333-390, 1977.
doi:10.1090/S0025-5718-1977-0431719-X
7. Turkel, E., "Progress in computational physics," Computers and Fluids, Vol. 11, No. 2, 121-144, 1983.
doi:10.1016/0045-7930(83)90006-3
8. Chatterjee, A. and G. Shevare, "A time-accurate multigrid algorithm for Euler equations," Fourteenth International Conference on Numerical Methods in Fluid Dynamics, Lecture Notes in Physics, 453, Springer-Verlag, 1995.
9. Ni, R.-H., "A multiple-grid scheme for solving the Euler equations," AIAA Journal, Vol. 20, 1565-1571, 1982.
10. Jameson, A., "Solution of the Euler equations for two-dimensional flow by a multigrid methods," Applied Mathematics and Computation, Vol. 13, 327-356, 1983.
doi:10.1016/0096-3003(83)90019-X
11. Deore, N. and A. Chatterjee, "A cell-vertex finite volume time domain method for electromagnetic scattering," Progress In Electromagnetics Research M, Vol. 12, 1-15, 2010.
doi:10.2528/PIERM10022003
12. Koeck, C., "Computation of three-dimensional flow using the Euler equations and a multiple-grid scheme," International Journal for Numerical Methods in Fluids, Vol. 5, 483-500, 1985.
doi:10.1002/fld.1650050507
13. Ni, R. H. and J. C. Bogoian, "Prediction of 3-D multistage turbine flow field using a multiple-grid Euler solver," AIAA Paper, 1-9, 89--0203, Jan. 1989.
14. Roe, P. L., "Fluctuations and signals --- A framework for numerical evolution problems," Numerical Methods in Fluid Dynamics, 219-257, K. W. Morton and M. J. Baines (eds.), Academic Press, 1982.
15. Hall, M. G., "Cell-vertex multigrid schemes for solution of the Euler equations," Numerical Methods for Fluid Dynamics II, 303-345, K. W. Morton and M. J. Baines (eds.), Clarendon Press, Oxford, 1985.
16. Radespiel, R., C. Rossow, and R. C. Swanson, "Efficient cell-vertex multigrid scheme for the three-dimensional Navier-Stokes equations," AIAA Journal, Vol. 28, No. 8, 1464-1472, 1990.
doi:10.2514/3.25239
17. Swanson, R. C. and R. Radespiel, "Cell centered and cell vertex multigrid schemes for the Navier-Stokes equations," AIAA Journal, Vol. 29, No. 5, 697-703, 1991.
doi:10.2514/3.10643
18. French, A. D., "Solution of the Euler equations on cartesian grids," Applied Numerical Mathematics, Vol. 49, 367-379, 2004.
doi:10.1016/j.apnum.2003.12.014
19. Shankar, V., W. F. Hall, and A. H. Mohammadin, "A time-domain differential solver for electromagnetic scattering problems," Proceedings of the IEEE, Vol. 77, No. 5, 709-721, 1989.
doi:10.1109/5.32061