Vol. 23
Latest Volume
All Volumes
PIERB 109 [2024] PIERB 108 [2024] PIERB 107 [2024] PIERB 106 [2024] PIERB 105 [2024] PIERB 104 [2024] PIERB 103 [2023] PIERB 102 [2023] PIERB 101 [2023] PIERB 100 [2023] PIERB 99 [2023] PIERB 98 [2023] PIERB 97 [2022] PIERB 96 [2022] PIERB 95 [2022] PIERB 94 [2021] PIERB 93 [2021] PIERB 92 [2021] PIERB 91 [2021] PIERB 90 [2021] PIERB 89 [2020] PIERB 88 [2020] PIERB 87 [2020] PIERB 86 [2020] PIERB 85 [2019] PIERB 84 [2019] PIERB 83 [2019] PIERB 82 [2018] PIERB 81 [2018] PIERB 80 [2018] PIERB 79 [2017] PIERB 78 [2017] PIERB 77 [2017] PIERB 76 [2017] PIERB 75 [2017] PIERB 74 [2017] PIERB 73 [2017] PIERB 72 [2017] PIERB 71 [2016] PIERB 70 [2016] PIERB 69 [2016] PIERB 68 [2016] PIERB 67 [2016] PIERB 66 [2016] PIERB 65 [2016] PIERB 64 [2015] PIERB 63 [2015] PIERB 62 [2015] PIERB 61 [2014] PIERB 60 [2014] PIERB 59 [2014] PIERB 58 [2014] PIERB 57 [2014] PIERB 56 [2013] PIERB 55 [2013] PIERB 54 [2013] PIERB 53 [2013] PIERB 52 [2013] PIERB 51 [2013] PIERB 50 [2013] PIERB 49 [2013] PIERB 48 [2013] PIERB 47 [2013] PIERB 46 [2013] PIERB 45 [2012] PIERB 44 [2012] PIERB 43 [2012] PIERB 42 [2012] PIERB 41 [2012] PIERB 40 [2012] PIERB 39 [2012] PIERB 38 [2012] PIERB 37 [2012] PIERB 36 [2012] PIERB 35 [2011] PIERB 34 [2011] PIERB 33 [2011] PIERB 32 [2011] PIERB 31 [2011] PIERB 30 [2011] PIERB 29 [2011] PIERB 28 [2011] PIERB 27 [2011] PIERB 26 [2010] PIERB 25 [2010] PIERB 24 [2010] PIERB 23 [2010] PIERB 22 [2010] PIERB 21 [2010] PIERB 20 [2010] PIERB 19 [2010] PIERB 18 [2009] PIERB 17 [2009] PIERB 16 [2009] PIERB 15 [2009] PIERB 14 [2009] PIERB 13 [2009] PIERB 12 [2009] PIERB 11 [2009] PIERB 10 [2008] PIERB 9 [2008] PIERB 8 [2008] PIERB 7 [2008] PIERB 6 [2008] PIERB 5 [2008] PIERB 4 [2008] PIERB 3 [2008] PIERB 2 [2008] PIERB 1 [2008]
2010-07-22
Cell-Vertex Based Multigrid Solution of the Time-Domain Maxwell's Equations
By
Progress In Electromagnetics Research B, Vol. 23, 181-197, 2010
Abstract
The time domain Maxwell's equations are numerically solved using a multigrid method in a scattered field formulation and a cell-vertex based finite volume time domain framework. The multilevel method is an adaptation of Ni's [9] cell-vertex based multigrid technique, proposed for accelerating steady state convergence of nonlinear Euler equations of gas dynamics. Accelerated convergence to steady state of the time domain Maxwell's equations, for problems involving electromagnetic scattering, is obtained using multiple grids without the use of additional numerical damping usually required in nonlinear problems. The linear nature of the Maxwell's system also allows for a more accurate representation of the fine-grid problem on the coarse grid.
Citation
Narendra Deore, and Avijit Chatterjee, "Cell-Vertex Based Multigrid Solution of the Time-Domain Maxwell's Equations," Progress In Electromagnetics Research B, Vol. 23, 181-197, 2010.
doi:10.2528/PIERB10062002
References

1. Shankar, V., "A gigaflop performance algorithm for solving Maxwell's equations of electromagnetics," AIAA Paper, 584-590, 91--1578, June 1991.

2. Chatterjee, A. and R. S. Myong, "Efficient implementation of higher-order finite volume time-domain method for electrically large scatterers," Progress In Electromagnetics Research B, Vol. 17, 233-254, 2009.
doi:10.2528/PIERB09073102

3. Shang, J. S., "Characteristic-based algorithms for solving the Maxwell equations in the time domain," IEEE Antennas and Propagation Society Magazine, Vol. 37, No. 3, 15-25, 1995.
doi:10.1109/74.388807

4. Chatterjee, A. and A. Shrimal, "Essentially nonoscillatory finite volume scheme for electromagnetic scattering by thin dielectric coatings," AIAA Journal, Vol. 42, No. 2, 361-365, 2004.
doi:10.2514/1.553

5. Yee, K., "Numerical solutions of initial boundary value problems involving Maxwell's equations in isotropic media," IEEE Transactions on Antennas and Propagation, Vol. 14, 302-307, 1966.

6. Brandt, A., "Multi-level adaptive solutions to boundary-value problems," Mathematics of Computation, Vol. 31, No. 138, 333-390, 1977.
doi:10.1090/S0025-5718-1977-0431719-X

7. Turkel, E., "Progress in computational physics," Computers and Fluids, Vol. 11, No. 2, 121-144, 1983.
doi:10.1016/0045-7930(83)90006-3

8. Chatterjee, A. and G. Shevare, "A time-accurate multigrid algorithm for Euler equations," Fourteenth International Conference on Numerical Methods in Fluid Dynamics, Lecture Notes in Physics, 453, Springer-Verlag, 1995.

9. Ni, R.-H., "A multiple-grid scheme for solving the Euler equations," AIAA Journal, Vol. 20, 1565-1571, 1982.

10. Jameson, A., "Solution of the Euler equations for two-dimensional flow by a multigrid methods," Applied Mathematics and Computation, Vol. 13, 327-356, 1983.
doi:10.1016/0096-3003(83)90019-X

11. Deore, N. and A. Chatterjee, "A cell-vertex finite volume time domain method for electromagnetic scattering," Progress In Electromagnetics Research M, Vol. 12, 1-15, 2010.
doi:10.2528/PIERM10022003

12. Koeck, C., "Computation of three-dimensional flow using the Euler equations and a multiple-grid scheme," International Journal for Numerical Methods in Fluids, Vol. 5, 483-500, 1985.
doi:10.1002/fld.1650050507

13. Ni, R. H. and J. C. Bogoian, "Prediction of 3-D multistage turbine flow field using a multiple-grid Euler solver," AIAA Paper, 1-9, 89--0203, Jan. 1989.

14. Roe, P. L., "Fluctuations and signals --- A framework for numerical evolution problems," Numerical Methods in Fluid Dynamics, 219-257, K. W. Morton and M. J. Baines (eds.), Academic Press, 1982.

15. Hall, M. G., "Cell-vertex multigrid schemes for solution of the Euler equations," Numerical Methods for Fluid Dynamics II, 303-345, K. W. Morton and M. J. Baines (eds.), Clarendon Press, Oxford, 1985.

16. Radespiel, R., C. Rossow, and R. C. Swanson, "Efficient cell-vertex multigrid scheme for the three-dimensional Navier-Stokes equations," AIAA Journal, Vol. 28, No. 8, 1464-1472, 1990.
doi:10.2514/3.25239

17. Swanson, R. C. and R. Radespiel, "Cell centered and cell vertex multigrid schemes for the Navier-Stokes equations," AIAA Journal, Vol. 29, No. 5, 697-703, 1991.
doi:10.2514/3.10643

18. French, A. D., "Solution of the Euler equations on cartesian grids," Applied Numerical Mathematics, Vol. 49, 367-379, 2004.
doi:10.1016/j.apnum.2003.12.014

19. Shankar, V., W. F. Hall, and A. H. Mohammadin, "A time-domain differential solver for electromagnetic scattering problems," Proceedings of the IEEE, Vol. 77, No. 5, 709-721, 1989.
doi:10.1109/5.32061