1. Sievenpiper, D. F., M. E. Sickmiller, and E. Yablonovitch, "3D wire mesh photonic crystals," Phys. Rev. Lett., Vol. 76, No. 14, 2480-2483, 1996.
doi:10.1103/PhysRevLett.76.2480
2. Pendry, J. B., A. J. Holden, W. J. Stewart, and I. Youngs, "Extremely low frequency plasmons in metallic mesostructures," Phys. Rev. Lett., Vol. 76, No. 25, 4773-4776, 1996.
doi:10.1103/PhysRevLett.76.4773
3. Raether, H., Surface Plasmons on Smooth and Rough Surfaces and on Gratings, Springer, Berlin, 1988.
4. Kreibig, U. and M. Vollmer, Optical Properties of Metal Clusters, Springer, Berlin, 1995.
5. Low, K. L., M. Z. MatJarfi, and S. A. Khan, "Effective plasma frequency for two-dimensional metallic photonic crystals," Progress In Electromagnetics Research M, Vol. 12, 67-79, 2010.
doi:10.2528/PIERM10031505
6. Jiang, T., L. Shen, X. Zhang, and L. X. Ran, "High-order modes of spoof surface plasmon polaritons on periodically corrugated metal surfaces ," Progress In Electromagnetics Research M, Vol. 8, 91-102, 2009.
doi:10.2528/PIERM09062901
7. Soto-Puebla, D., M. Xiao, and F. Ramos-Mendieta, "Optical properties of a dielectric-metallic superlattice: The complex photonic bands," Phys. Lett. A, Vol. 326, 273-280, 2004.
doi:10.1016/j.physleta.2004.03.070
8. Kong, F., K. Li, H. Huang, B. I. Wu, and J. A. Kong, "Analysis of the surface magnetoplasmon modes in the semiconductor slit waveguide at terahertz frequencies," Progress In Electromagnetics Research, Vol. 82, 257-270, 2008.
doi:10.2528/PIER08031224
9. Apostol, M. and G. Vaman, "Plasmons and diffraction of an electromagnetic plane wave by a metallic sphere," Progress In Electromagnetics Research, Vol. 98, 97-118, 2009.
doi:10.2528/PIER09100103
10. Srivastava, S. K. and S. P. Ojha, "Photonic band gaps in one-dimensional metallic star waveguide structure," Progress In Electromagnetics Research, Vol. 84, 349-362, 2008.
doi:10.2528/PIER08080501
11. Pokrovsky, A. L. and A. L. Efros, "Electrodynamics of metallic photonic crystals and the problem of left-handed materials," Phys. Rev. Lett., Vol. 89, No. 9, 093901-093904, 2002.
doi:10.1103/PhysRevLett.89.093901
12. Maslovski, S. I., S. A. Tetryakov, and P. A. Belov, "Wire media with negative effective permittivity: A quasi-static model," Microwave Opt. Technol. Lett., Vol. 35, No. 1, 47-51, 2002.
doi:10.1002/mop.10512
13. Markos, P. and C. M. Soukoulis, "Absorption losses in periodic arrays of thin metallic wires," Opt. Lett., Vol. 28, 846-848, 2003.
doi:10.1364/OL.28.000846
14. Tretyakov, S., Analytical Modeling in Applied Electromagnetics, Artech-House Publishing, New-York, 2004.
15. Pendry, J. B., A. J. Holden, D. J. Robbins, and W. J. Stewart, "Low frequency plasmons in thin-wire structures," J. Phys.: Condens. Matter, Vol. 10, No. 22, 4785-4809, 1998.
doi:10.1088/0953-8984/10/22/007
16. Smith, D. R., D. C. Vier, W. Padilla, C. S. Nemat-Nasse, and S. Shultz, "Loop-wire medium for investigating plasmons at microwave frequencies," Appl. Phys. Lett., Vol. 75, 1425-1427, 1999.
doi:10.1063/1.124714
17. Sigalas, M. M., C. T. Chan, K. M. Ho, and C. M. Soukoulis, "Metallic photonic band-gap materials," Phys. Rev. B, Vol. 52, No. 16, 11744-11751, 1995.
doi:10.1103/PhysRevB.52.11744
18. Brand, S., R. A. Abram, and M. A. Kaliteevski, "Complex photonic band structure and effective plasma frequency of a two-dimensional array of metal rods," Phys. Rev. B, Vol. 75, No. 3, 035102-035109, 2007.
doi:10.1103/PhysRevB.75.035102
19. Sarychev, A. K. and V. M. Shalaev, "Electromagnetic field fluctuations and optical nonlinearities in metal-dielectric composites," Phys. Rep., Vol. 335, 275-371, 2000.
doi:10.1016/S0370-1573(99)00118-0
20. Pimenov, A. and A. Loidl, "Experimental demonstration of artificial dielectrics with a high index of refraction," Phys. Rev. B, Vol. 74, No. 19, 193102-193105, 2006.
doi:10.1103/PhysRevB.74.193102
21. Pimenov, A., M. Biberacher, D. Ivannikov, A. Loidl, A. A. Mukhin, Y. G. Goncharov, and A. M. Balbashov, "Scaling of terahertz conductivity at the metal-insulator transition in doped manganites ," Phys. Rev. B, Vol. 73, No. 22, 220407-220410, 2006.
doi:10.1103/PhysRevB.73.220407
22. Pimenov, A. and A. Loidl, "Conductivity and permittivity of two-dimensional metallic photonic crystals," Phys. Rev. Lett., Vol. 96, No. 6, 063903-063906, 2006.
doi:10.1103/PhysRevLett.96.063903
23. Shelby, R. A., D. R. Smith, and S. Schultz, "Experimental verification of a negative index of refraction," Science, Vol. 282, 77-79, 2001.
doi:10.1126/science.1058847
24. Ward, A. J., J. B. Pendry, and W. J. Stewart, "Photonic dispersion surfaces," J. Phys.: Condens. Matter, Vol. 7, 2217-2224, 1995.
doi:10.1088/0953-8984/7/10/027
25. Scalora, M., M. J. Bloemer, A. S. Pethel, J. P. Dowling, C. M. Bowden, and A. S. Manka, "Transparent, metallo-dielectric, one-dimensional, photonic band-gap structure," J. Appl. Phys., Vol. 83, No. 5, 2377-2383, 1998.
doi:10.1063/1.366996
26. Bloemer, M. J. and M. Scalora, "Transmissive properties of Ag/MgF2 photonic band gaps," Appl. Phys. Lett., Vol. 72, No. 14, 1676-1678, 1998.
doi:10.1063/1.121150
27. Feng, S., J. M. Elson, and P. L. Overfelt, "Transparent photonic band in metallodielectric nanostructures," Phys. Rev. B, Vol. 72, No. 8, 085117-085122, 2005.
doi:10.1103/PhysRevB.72.085117
28. Xu, X., Y. Xi, D. Han, X. Liu, J. Zi, and Z. Zhu, "Effective plasma frequency in one-dimensional metallic-dielectric photonic crystals ," Appl. Phys. Lett., Vol. 86, 09112-09114, 2005.
29. Jackson, J. D., Classical Electrodynamics, Wiley, New York, 1999.
30. Yeh, P., A. Yariv, and C. H. Hong, "Electromagnetic propagation in periodic startified media. I. General theory," J. Opt. Soc. A, Vol. 67, No. 4, 423-438, 1977.
doi:10.1364/JOSA.67.000423
31. Bergmair, M., M. Huber, and K. Hingerl, "Band structure, Wiener bounds, and coupled surface plasmons in one dimensional photonic crystals," Appl. Phys. Lett., Vol. 89, 081907-081909, 2006.
doi:10.1063/1.2338546