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Abstract—In this work, an analytic expression to define the effective
plasma frequency of an one-dimensional periodic system containing
alternating dielectric and metallic slabs is proposed. Such metallic
elements are considered to have a Drude dielectric function. The
effective plasma frequency is obtained as a simple average of the
constitutive materials, and its cutoff frequency for the propagating
modes is compared with band structure calculations. We also explore
the role of absorption in the transparency frequency cutoff.

1. INTRODUCTION

Optical properties of periodically modulated metallic-dielectric
structures have attracted a great deal of interest since the pioneering
work of Sievenpiper et al. [1] and Pendry et al. [2] where such
systems where first discussed. When light interacts with a metal,
the propagation is dominated by the free electrons which behave as
a plasma. Using the Drude model, it is possible to define a metallic
dielectric function in the form

εm(ω) = 1− ω2
p

(ω2 + iγω)
(1)

with ωp = ne2/ε0m as the plasma frequency with a typical 1015 Hz
value for various bulk metals. Here ε0 is the free space permittivity.
n is the electron density. e is the charge. m is the electron
mass. γ is a damping term representing the dissipative loses in the
system. If we ignore the absorption effects, above ωp the dielectric
function is positive, and the medium is transparent to light. On the
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other hand, if the frequency is below ωp the dielectric function is
negative, and the metal becomes a mirror. However, if we consider
light with ω < ωp impinging from a dielectric medium there always
exists a small amount of penetration on the metal surface called
skin dept. A consequence of this penetration is a coupling that
allows the existence of electromagnetic modes bounding the dielectric-
metal interface. These are the surface plasmons resonances (SPRs),
responsible of unique phenomena for metals [3–10].

SPRs are electromagnetic waves that propagate parallel to the
dielectric-metal interface. These waves are very sensitive to the
presence of any other SPRs in its vicinity. Pendry et al. [2] introduced
the idea that a geometrical configuration with multiple interfaces —
such as a three dimensional array of thin metallic wires — is able
to support collective oscillations of SPRs. The description of the
composite structure and its interaction with electromagnetic waves
was given in terms of a simple formula which has a great conceptual
elegance because it unifies all the electromagnetic phenomena in
a simple equation [2]. Ignoring absorption effects, the collective
oscillations in the composite structure can be characterized in terms of
an effective dielectric function of the form εeff = 1−Ω2

p/ω2, where Ωp

is the effective plasma frequency. Such effective media have unusual
properties difficult to find in other metalic solids. In close similitude
with bulk metals, light of frequency below Ωp is reflected because
the composite medium behaves as an effective medium with negative
dielectric function (εeff < 0), for which propagating modes can not
exist. On the other hand, light of frequency above Ωp is transmitted
because the effective medium is positive (εeff > 0) and propagating
modes are allowed. The interesting fact is that the cutoff of the
propagating modes defined by Ωp is now in the GHz regime, opening
new possibilities for microwave metallo-dielectric photonic crystals
(MDPC).

The derivation of an effective plasma frequency was first done
for a three dimensional array of very thin metallic cylinders, and the
theoretical analysis was made by considering the electromagnetic self-
inductance of the wire structure as the predominant phenomena in
the composite medium [2]. Recent approximations have also taken
into account the spatial dispersion of the effective medium [11–14].
The effective plasma frequency for three-dimensional (3D) metallic-
dielectric Photonic Crystals (3D-MDPC) have been experimentally
verified in a number of works [15–17].

For two-dimensional (2D) geometries there is no unified theoretical
approach to deal with this problem, and a number of alternative
analytical attempts have been tried to deal with the determination
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of the effective plasma [2, 11–14, 18, 19]. However, these results are
still controversial. For a recent review see the works by Brand et al.
[18] and Markos et al. [13]. From the experimental side, the existence
of the plasma frequency in 2D-MDPC is well documented [17, 20–23].

In the case of the one-dimensional (1D) MDPC the effective
plasma frequency has been much less studied. There are several reports
where the transparency cutoff of a 1D-MDPC has been calculated or
measured [24–27]. To the author’s knowledge, only one work by Xu
et al. [28] exists, where an explicit formula for the effective plasma
frequency has been given. Xu and co-workers have reported three
erroneous conclusions about the effective plasma frequency. First,
these authors consider that the plasma frequency does not depend
on the plasma frequency of the constituent metal. Second, in the
case of low metallic filling fraction the effective plasma frequency is
insensitive to the thickness of the metallic layer. Third, the effective
plasma frequency is inversely proportional to thickness of the dielectric
layer.

In this work, we have three objectives. First, to present an
alternative way to Ref. [28] to determine the effective plasma frequency
and the conditions that define the transparency in an 1D-MDPC.
Second, to show that different from 2D-MDPC, in 1D-MDPC the cutoff
frequency that defines the transparency condition is not related to
sophisticated phenomena such as the induction of magnetic fields or
the enhancement of the effective electron mass [2]. Third, to explore
the role of absorption in the transparency cutoff frequency.

2. THEORY

We begin the analysis by considering an 1D-MDPC as shown in Fig. 1,
panel (a). The unit cell is composed by two slabs of metallic and
dielectric materials of dielectric functions εm(ω) and εd, respectively.
The width of the unit cell is d = dm + dd, where the metallic and
dielectric layers are dm and dd, respectively. In the unit cell, the
position dependent dielectric function can be written as

ε(x, ω) = εm(ω) + [εd − εm(ω)]Θ(x− dm) (2)
where we have used the Heaviside function which is Θ(x) = 1 if x ≥ 1
and Θ(x) = 0 if x < 0. The dielectric function is periodic in x−axis
and can be expanded in Fourier series in the form

ε(x, ω) =
∑

G

ε(G)eiGx = ε(0) +
∑

G′
ε(G′)eiG′x (3)

Here G = 2πn/d is the reciprocal lattice vector, and n is an integer
number. The primes indicate that the terms with G = 0 are excluded
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Figure 1. In panel (a), schematic of a metallic-dielectric one-
dimensional photonic crystal where is illustrated the unit cell. In panel
(b), the corresponding effective medium. In both panels we present the
direction of the electric field and the wave vector.

from the sum. The Fourier coefficients ε(G) can be found integrated
in the unit cell

ε(G) =
1
d

∫ d

0
ε(x)e−iGxdx (4)

The result of this integral is
ε(G) = ε(0)δG,0 + ε(G)(1− δG,0) (5)

The Fourier coefficient for G = 0 is
ε(0) = fεm(ω) + (1− f)εd (6)

where we have taken f = dm/d. The Fourier coefficient for G 6= 0 is

ε(G) =
εm(ω)− εd

iGd
(1− e−iGdm) (7)

The effective index can be taken as the average over the unit cell in
the form [29]

εeff (ω) =< ε(x, ω) >=
∫

dx′f(x′)ε(x− x′, ω) (8)

If we consider the simplest case where f(x′) = 1/d we obtain

εeff (ω) = ε(0) +
1
d

∑

G′
ε(G′)

∫ d

0
eiG′(x−x′)dx′ (9)
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The integral of the second term is zero, then we only retain the
term with G = 0

εeff (ω) = fεm(ω) + (1− f)εd (10)

Considering the metallic dielectric function in Eq. (1) we can write

εeff (ω) = ε0 −
Ω2

p

ω2 + iγω
(11)

where ε0 = εd + f(1 − εd) is an static dielectric constant for the
composite structure. The effective plasma frequency is defined by

Ωp(f) =
√

fωp (12)

This result indicates that the effective plasma frequency is
proportional to the metallic plasma frequency times the square root
of the filling fraction.

Now we consider Fig. 1(b) where we illustrate how the metallic-
dielectric composite can be switched into an effective medium. The
wave equation for the electric field of the effective medium is

∂2

∂x2
Ey(x) = −ω2

c2
εeff (ω)Ey(x) (13)

The solution of this equation is

Ey(x) = E+
y,0e

+iKeff (ω)x + E−
y,0e

−iKeff (ω)x (14)

where we have defined

Keff (ω) =
√

εeff (ω)
ω

c
(15)

Let us consider the case without absorption in Eq. (11) taking
γ = 0. Propagating modes are possible in the effective medium when
εeff (ω) > 0, and therefore the multilayer medium is transparent.
Conversely, evanescent modes exist when εeff (ω) < 0 and the
composite media block the impinging light. These restrictions allow to
write a cutoff frequency for the propagating modes in the form

ωcut(f) =
Ωp√
ε0

=
√

fωp√
εd + f(1− εd)

(16)

This equation defines, in a simple way, the conditions where the
composite medium becomes transparent. This is the main result of
this work. With this equation we are proposing — different from
Ref. [28] — that the transparency can be determined as function of
the structural parameters of the composite medium, such as the filling
fraction (f), metallic plasma frequency (ωp) and dielectric function of
the dielectric medium (εd).
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In [28], Xu et al. have reported an analytical expression for the
effective dielectric function as follows

ε̃eff (ω) = ε̃0

(
1− Ω̃2

p

ω2

)
(17)

where ε̃0 is defined as “the effective static dielectric constant of the
1D MDPC, simply taken as the geometric mean of the static dielectric
constant of the metallic and dielectric layers” [28]. The effective plasma
frequency was proposed as

Ω̃p =
πc

nddd
(18)

where nd =
√

εd and dd are the refractive index and the thickness of the
dielectric layer, respectively. However, it is easy to see that Eq. (18)
is not a good approximation for the effective plasma frequency. For
example, it fails in the limit of the homogeneous bulk metal where it
is expected that Ωp = ωp. In Eq. (18), the limit where the dielectric
layer goes to zero is

lim
dd→0

Ω̃p = ∞ (19)

In contrast, in our Eq. (16) in the limit of the homogeneous bulk
metal we have

lim
f→1

Ωp = ωp (20)

In order to determine the accuracy of our cutoff frequency in
Eq. (16), we calculate the photonic band structure of the composite
structure using the well-known formula [30]

cos[k(ω)d] = cos(kddd) cos[km(ω)dm]

−1
2

[
kd

km(ω)
+

km(ω)
kd

]
sin(kddd) sin[km(ω)dm] (21)

Here k(ω) is the Bloch wave vector. kd =
√

εdω/c and km(ω) =√
εm(ω)ω/c are the wave vector for the dielectric and metallic medium,

respectively.

3. THE CASE WITHOUT ABSORPTION

Let us start by presenting the case without absorption, γ = 0 in the
metallic component of Eq. (1). For simplicity, we consider that the
dielectric medium is vacuum, εd = 1. The effective plasma frequency
of Eq. (11) is reduced to the expression

εeff (ω) = 1− f
ω2

p

ω2
(22)
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In Fig. 2, we present the effective plasma frequency for three values
of the filling fraction. From right to left, we present the cases of filling
fraction f = 0.95, f = 0.5 and f = 0.05 with blue, green and red lines,
respectively. We observe that the effective dielectric function shifts to
lower frequencies as the filling fraction decreases. The cutoff is the
point where εeff (ω) = 0. We observe how the cutoff also shifts to lower
frequencies as the filling fraction decreases.

In Fig. 3, we present the dispersion relation of a 1D-MDPC with a
period of d = 0.5(2πc/ωp). The wave vectors k(ω) and Keff of Eqs. (20)
and (15) are presented with solid and dashed lines, respectively. In
both panels the cases of filling fraction f = 0.95, f = 0.5 and f = 0.05
are plotted with blue, green and red lines. We present in panels (a)
and (b) the real and imaginary parts of the wave vector. We observe
in panel (a) that k(ω) is limited to the First Brillouin Zone (FBZ). In
change, Keff extends beyond the FBZ. We observe that in both panels,
the cases of f = 0.95 and f = 0.05, the dispersion relations are similar.
Conversely, for the case of f = 0.5 the dispersion relation presents a
slight difference. Transparency exists in 1D-MDPC where the real part
of the wave vector is positive or in an equivalent manner, when zero
component of the imaginary part of the wave vector exists.

In order to determine the variation of the transparency as a
function of the filling fraction we consider the cutoff condition of
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Figure 2. Effective dielectric function as a function of the frequency.
We plot three cases of filling fraction, f = 0.95, f = 0.5, and f = 0.05
with blue, green and red colors, respectively.
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Figure 3. Relation dispersion for a 1D-MDPC of period d =
0.5(2πc/ωp). The wave vectors k(ω) and Keff are presented with solid
and dashed lines, respectively. In panels (a) and (b) we have the real
and imaginary parts of the wave vector. In both panels the cases of
filling fraction f = 0.95, f = 0.5, and f = 0.05 are plotted with blue,
green and red lines, respectively.

Eq. (16) in the case εd = 1,

ωcut(f) =
√

fωp (23)

In Fig. 4, this cutoff frequency is plotted with black line. As
comparison, we present the condition of propagating modes where the
real wave vectors become positive, <[Keff (ω)] > 0 and <[k(ω)] > 0,
using gray and orange lines, respectively. We observe that for low
(f < 0.1) and high (f > 0.9) filling fraction the three cutoff conditions
agree well. In the regime of 0.5 < f < 0.9 the cutoff frequency defined
by <[k(ω)] > 0 has a lower value than the ωcut(f) and the condition
<[Keff ] > 0. The disagreement becomes more pronounced at the filling
fraction f = 0.5.

In Eq. (21) it is established that <[k(ω)] > 0 is a function of the
variation of the magnitude of lattice period d. In contrast, <[Keff ] and
ωcut(f) defined in Eqs. (15) and (16) are invariant for any d. In order to
sketch the cutoff dependence on the condition <[k(ω)] > 0 we consider
a 1D-MDPC with a filling fraction of f = 0.5. We consider a variation
of the lattice period in the form d = α(2πc/ωp), where α takes values
between the interval [0 : 2]. In Fig. 5, we present the variation of
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Figure 4. Variation of the cutoff frequency as a function of the filling
fraction, f . ωcut(f) and the conditions <(Keff )(ω) > 0 and <[k(ω)] > 0
are plotted with black, gray and orange lines, respectively.
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Figure 5. Variation of the cutoff condition as a function of the lattice
period d = α(2πc/ωp) in the case of a filling fraction f = 0.5. The cases
of ωcut(f), <[Keff ] > 0 and <[k(ω)] > 0 are presented with black, gray
and orange lines, respectively.
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<[k(ω)] > 0 with an orange line. We also plot the conditions ωcut(f)
and <[Keff ] > 0 with black and gray lines, respectively. We find that
better agreement among the three cutoff conditions is for the cases
when α < 0.2.

4. THE CASE WITH ABSORPTION

Now we consider the case with absorption, where γ 6= 0. For simplicity,
here we also consider that the dielectric function is the air, εd = 1. The
effective plasma frequency in this case is

εeff (ω) = 1− f
ω2

p

ω2 + iγω
(24)

We present in Fig. 6 the complex effective dielectric function as
a function of the frequency for a lossless parameter of γ = 0.1ωp.
The real and imaginary parts are plotted with solid and dashed lines,
respectively. We present the cases of filling fraction f = 0.95, f = 0.5
and f = 0.05 with blue, green and red lines.

In the presence of absorption, the effective dielectric function is
a complex number, thus is not possible to define a simple analytical
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Figure 6. Effective dielectric function in presence of absorption. We
consider that the lossless parameter is γ = 0.1ωp. We present the real
and imaginary part of the dielectric function with solid and dashed
lines. We plot three cases of filling fraction, f = 0.95, f = 0.5, and
f = 0.05 with blue, green and red colors, respectively.
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Figure 7. Relation dispersion for a 1D-MDPC of period d =
0.5(2πc/ωp) in presence of absorption, γ = 0.1ωp.

condition to determine the propagating modes, as we have done in Eq.
(16) for the case without absorption

In order to illustrate the complex propagation in 1D-MDPC in
the presence of absorption, we present in Fig. 7 the complex dispersion
relation for the case of a period d = 0.5(2πc/ωp) taking an absorption
of γ = 0.1ωp. The wave vectors k(ω) and Keff are presented with solid
and dashed lines, respectively. In panels (a) and (b) we have the real
and imaginary parts of the wave vector. In both panels the cases of
filling fraction f = 0.95, f = 0.5 and f = 0.05 are plotted with blue,
green and red lines.

We conclude that in the presence of absorption, it is not possible
to define an analytical expression for the cutoff to predict the
transparency in 1D-MDPC. However, it is possible to define some
numerical restriction for the imaginary part of the wave vector, such
as =(Keff (ω)) < 0.01 in a similar manner as recently proposed by
Bergmair et al. [31]. Nevertheless, this procedure does not allow to
define an analytical cutoff frequency for the transparency region in the
case with absorption.

5. CONCLUSION

In conclusion, in the case of absence of absorption we have given an
analytical expression to define the cutoff frequency for the propagating
modes. We have found that the transparency condition is a function
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of the filling fraction and the dielectric functions of the dielectric and
metallic component. We have also explored the conditions of filling
fraction and lattice period where our formula is suitable.

In the case of presence of absorption, we have found that it is
not possible to define a simple analytical rule to determine the cutoff
frequency.

We have demonstrate that different from the case of 2D-
MDPC, the transparency condition in 1D-MDPC is a function of the
constitutive parameters of the composite medium. We expect that
these results may be of help to have a deeper understanding of the
physical properties of metalo-dielectric photonic crystals.
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