1. Weir, W. B., "Automatic measurement of complex dielectric constant and permeability at microwave frequencies," Proc. of the IEEE, Vol. 62, 1972.
2. Hewlett-Packard Product Note, , , No. 8510-3.
3. Chukhov, V., "Methodic of magnetic permeability measurement," 14th International Crimean Conference on Microwave and Telecommunication Technology, 680-681, CriMico, Sept. 2004.
4. Bussey, H. B., "Measurment of RF properties of materials a survey," Proc. of The IEEE, Vol. 55, No. 6, 1046-1053, 1967.
doi:10.1109/PROC.1967.5719
5. Barry, W., "A broad-band, automated, stripline techniques for the simultaneous measurement of complex permittivity an permeability," IEEE Trans. on MTT, Vol. 34, No. 1, 80-84, 1986.
doi:10.1109/TMTT.1986.1133283
6. Jarvis, J. B., M. D. Janezic, B. F. Riddle, R. T. Johnk, R. Kabos, C. L. Holloway, R. G. Geyer, and C. A. Grosvenor, Measuring the permittivity and permeability of lossy materials: Solids, liquids, metals, building materials, and negative-index materials, NIST Technical Note 1536, Boulder, CO, 2005.
7. Wu, Y. Q., Z. X. Tang, Y. H. Xu, and B. Zhang, "Measuring complex permeability of ferromagnetic thin films using microstrip transmission method," Journal of Electromagnetic Waves and Applications, Vol. 23, No. 10, 1303-1311, 2009.
doi:10.1163/156939309789108598
8. Naishadham, K., "A rigorous experimental characterization of ferrite inductors for RF noise suppression," 1999 IEEE Radio and Wireless Conf., RAWCON 99, 271-274, Denver, CO, Aug. 1999.
9. Yu, Q., T. W. Holmes, and K. Naishadham, "RF equivalent circuit modeling of ferrite-core inductors and characterization of core materials," IEEE Trans. Electromagn. Compat., Vol. 44, No. 1, 258-262, Feb. 2002.
doi:10.1109/15.990733
10. Foo, C. F. and D. M. Zhang, "A resonant method to construct core loss of magnetic materials using impedance analyzer," PESC 98 Record 29th Ann. IEEE Power Electronics Specialists Conf., Vol. 2, 1997-2002, Fukuoka, Japan, May 1998.
11. Shenhui, J. and J. Quanxing, "An alternative method to determine the initial permeability of ferrite core using network analyzer," IEEE Trans. on EMC, Vol. 47, No. 3, 651-657, 2005.
12. Dosoudil, R., E. Ušak, and V. Olah, "Computer controlled system for complex permeability measurement in the frequency range of 5 Hz--1 GHz," Journal of Electrical Engineering, Vol. 57, No. 8/S, 105-109, 2006.
13. Agilent 16454A Magnetic Material Test Fixture Operation and Service Manual,5th Ed., , No. 16454-90 Agilent Tech. Rep., Agilent Technologies, Inc., Palo Alto, CA, Jul. 2001.
14. Huang, R. and D. Zhang, "Application of mode matching method to analysis of axisymmetric coaxial discontinuity structures used in permeability and/or permittivity measurement," Progress In Electromagnetics Research, Vol. 67, 205-230, 2007.
doi:10.2528/PIER06083103
15. Huang, J., K. Wu, P. Morin, and C. Akgel, "Characterization of highly dispersive materials using composite coaxial cells: Electromagnetic analysis and wideband measurement," IEEE Trans. on MMT, Vol. 44, No. 5, 770-777, 1996.
doi:10.1109/22.493931
16. Zhang, D. M. and C. F. Foo, "Theoretical analysis of the electrical and magnetic field distribution in a toroidal core with circular cross section," IEEE Trans. on Mag., Vol. 33, No. 3, 1924-1931, Part 2, 1999.
17. Hacivelioglu, F. and A. Büyükaksoy, "Wiener-hopf analysis of finite-length impedance loading in the outer conductor of a coaxial waveguide," Progress In Electromagnetics Research B, Vol. 5, 241-251, 2008.
doi:10.2528/PIERB08022203
18. Jiang, H. and R.-M. Xu, "9.5 GHz 16λg delay line using multilayer LTCC," Progress In Electromagnetics Research Letters, Vol. 6, 175-182, 2009.
doi:10.2528/PIERL08122701
19. Lee, Y. C., "CPW-to-stripline vertical via transitions for 60 GHz LTCC SoP applications," Progress In Electromagnetics Research Letters, Vol. 2, 37-44, 2008.
doi:10.2528/PIERL07122805
20. Lee, Y. C. and T. W. Kim, "A low-loss patch LTCC bpf for 60 GHz system-on-package (SoP) applications," Progress In Electromagnetics Research Letters, Vol. 12, 183-189, 2009.
doi:10.2528/PIERL09110903
21. Gu, J., Y. Fan, and Y. Zhang, "A X-band 3-D SICC filter with low-loss and narrow band using LTCC technology," Journal of Electromagnetic Waves and Applications, Vol. 23, No. 8--9, 1093-1100, 2009.
22. Matters-Kammerer, M., et al. "Material propoerties and RF applications of high k and ferrite LTCC ceramics," Microelectronics and Reliability, 134-143, Jan. 2006.
doi:10.1016/j.microrel.2004.10.022
23. Slama, G., "Low-temperature sintering of Ni-Zn-Cu ferrite and its permeability spectra," Power Electronics and RF Applications, 30-34, Jan. 2003.
24. Wahlers, R. L., C. Y. D. Huang, M. R. Heinz, A. H. Feingold, J. Bielawski, and G. Slama, Low profile LTCC transformers, available at www.electroscience.com/publications/IMAPS2002-(1).pdf.
25. ESL ElectroScience, http://www.electroscience.com.
26. Schlomann, E., "Microwave behavior of partially magnetized ferrite," J. Appl. Phys., Vol. 41, No. 1, 204-214, 1970.
doi:10.1063/1.1658322
27. Tsutaoka, T., M. Ueshima, and T. Tokunaga, "Frequency dispersion and temperature variation of complex permeability of Ni-Zn ferrite composite materials," J. Appl. Phys., Vol. 78, No. 6, 3983-3991, 1995.
doi:10.1063/1.359919
28. Tsutaoka, T., "Frequency dispersion of complex permeability in Mn-Zn and Ni-Zn spinel ferrites and their composite materials,", Vol. 93, No. 5, 2789-2796, Mar. 2003.
doi:10.1063/1.1542651
29. Radonić, V., N. Blaž, and L. Živanov, "Measurement of complex permeability using short coaxial line reflection method," Acta Physica Polonica, Vol. 117, No. 4, 820-824, 2010.
30. MMG-Neosid, http://www.mmgca.com.