Vol. 23
Latest Volume
All Volumes
PIERB 109 [2024] PIERB 108 [2024] PIERB 107 [2024] PIERB 106 [2024] PIERB 105 [2024] PIERB 104 [2024] PIERB 103 [2023] PIERB 102 [2023] PIERB 101 [2023] PIERB 100 [2023] PIERB 99 [2023] PIERB 98 [2023] PIERB 97 [2022] PIERB 96 [2022] PIERB 95 [2022] PIERB 94 [2021] PIERB 93 [2021] PIERB 92 [2021] PIERB 91 [2021] PIERB 90 [2021] PIERB 89 [2020] PIERB 88 [2020] PIERB 87 [2020] PIERB 86 [2020] PIERB 85 [2019] PIERB 84 [2019] PIERB 83 [2019] PIERB 82 [2018] PIERB 81 [2018] PIERB 80 [2018] PIERB 79 [2017] PIERB 78 [2017] PIERB 77 [2017] PIERB 76 [2017] PIERB 75 [2017] PIERB 74 [2017] PIERB 73 [2017] PIERB 72 [2017] PIERB 71 [2016] PIERB 70 [2016] PIERB 69 [2016] PIERB 68 [2016] PIERB 67 [2016] PIERB 66 [2016] PIERB 65 [2016] PIERB 64 [2015] PIERB 63 [2015] PIERB 62 [2015] PIERB 61 [2014] PIERB 60 [2014] PIERB 59 [2014] PIERB 58 [2014] PIERB 57 [2014] PIERB 56 [2013] PIERB 55 [2013] PIERB 54 [2013] PIERB 53 [2013] PIERB 52 [2013] PIERB 51 [2013] PIERB 50 [2013] PIERB 49 [2013] PIERB 48 [2013] PIERB 47 [2013] PIERB 46 [2013] PIERB 45 [2012] PIERB 44 [2012] PIERB 43 [2012] PIERB 42 [2012] PIERB 41 [2012] PIERB 40 [2012] PIERB 39 [2012] PIERB 38 [2012] PIERB 37 [2012] PIERB 36 [2012] PIERB 35 [2011] PIERB 34 [2011] PIERB 33 [2011] PIERB 32 [2011] PIERB 31 [2011] PIERB 30 [2011] PIERB 29 [2011] PIERB 28 [2011] PIERB 27 [2011] PIERB 26 [2010] PIERB 25 [2010] PIERB 24 [2010] PIERB 23 [2010] PIERB 22 [2010] PIERB 21 [2010] PIERB 20 [2010] PIERB 19 [2010] PIERB 18 [2009] PIERB 17 [2009] PIERB 16 [2009] PIERB 15 [2009] PIERB 14 [2009] PIERB 13 [2009] PIERB 12 [2009] PIERB 11 [2009] PIERB 10 [2008] PIERB 9 [2008] PIERB 8 [2008] PIERB 7 [2008] PIERB 6 [2008] PIERB 5 [2008] PIERB 4 [2008] PIERB 3 [2008] PIERB 2 [2008] PIERB 1 [2008]
2010-07-16
Modeling and Characterization of Frequency and Temperature Variation of Complex Permeability of Ferrite LTCC Material
By
Progress In Electromagnetics Research B, Vol. 23, 131-146, 2010
Abstract
This paper presents modeling of the complex permeability spectra, fabrication and a wide frequency range characterization of a toroidal LTCC ferrite sample. A commercial ferrite tape ESL 40012 is used, and standard LTCC (Low Temperature Co-fired Ceramic) processing has been applied to the sample fabrication. The characterization was performed using a short coaxial sample holder and a vector network analyzer in the frequency range from 300 kHz to 1 GHz, at different temperatures. Using the model of the complex permeability spectra dispersion parameters of ferrite LTCC material has been determined for various temperatures. Characteristics of test samples are compared with modeled results and commercially available toroid made of similar NiZn ferrite material.
Citation
Nelu Blaz, Andrea Maric, Goran Radosavljevic, Ljiljana Zivanov, Goran Stojanovic, Ibrahim Atassi, and Walter Smetana, "Modeling and Characterization of Frequency and Temperature Variation of Complex Permeability of Ferrite LTCC Material," Progress In Electromagnetics Research B, Vol. 23, 131-146, 2010.
doi:10.2528/PIERB10061103
References

1. Weir, W. B., "Automatic measurement of complex dielectric constant and permeability at microwave frequencies," Proc. of the IEEE, Vol. 62, 1972.

2. Hewlett-Packard Product Note, , , No. 8510-3.

3. Chukhov, V., "Methodic of magnetic permeability measurement," 14th International Crimean Conference on Microwave and Telecommunication Technology, 680-681, CriMico, Sept. 2004.

4. Bussey, H. B., "Measurment of RF properties of materials a survey," Proc. of The IEEE, Vol. 55, No. 6, 1046-1053, 1967.
doi:10.1109/PROC.1967.5719

5. Barry, W., "A broad-band, automated, stripline techniques for the simultaneous measurement of complex permittivity an permeability," IEEE Trans. on MTT, Vol. 34, No. 1, 80-84, 1986.
doi:10.1109/TMTT.1986.1133283

6. Jarvis, J. B., M. D. Janezic, B. F. Riddle, R. T. Johnk, R. Kabos, C. L. Holloway, R. G. Geyer, and C. A. Grosvenor, Measuring the permittivity and permeability of lossy materials: Solids, liquids, metals, building materials, and negative-index materials, NIST Technical Note 1536, Boulder, CO, 2005.

7. Wu, Y. Q., Z. X. Tang, Y. H. Xu, and B. Zhang, "Measuring complex permeability of ferromagnetic thin films using microstrip transmission method," Journal of Electromagnetic Waves and Applications, Vol. 23, No. 10, 1303-1311, 2009.
doi:10.1163/156939309789108598

8. Naishadham, K., "A rigorous experimental characterization of ferrite inductors for RF noise suppression," 1999 IEEE Radio and Wireless Conf., RAWCON 99, 271-274, Denver, CO, Aug. 1999.

9. Yu, Q., T. W. Holmes, and K. Naishadham, "RF equivalent circuit modeling of ferrite-core inductors and characterization of core materials," IEEE Trans. Electromagn. Compat., Vol. 44, No. 1, 258-262, Feb. 2002.
doi:10.1109/15.990733

10. Foo, C. F. and D. M. Zhang, "A resonant method to construct core loss of magnetic materials using impedance analyzer," PESC 98 Record 29th Ann. IEEE Power Electronics Specialists Conf., Vol. 2, 1997-2002, Fukuoka, Japan, May 1998.

11. Shenhui, J. and J. Quanxing, "An alternative method to determine the initial permeability of ferrite core using network analyzer," IEEE Trans. on EMC, Vol. 47, No. 3, 651-657, 2005.

12. Dosoudil, R., E. Ušak, and V. Olah, "Computer controlled system for complex permeability measurement in the frequency range of 5 Hz--1 GHz," Journal of Electrical Engineering, Vol. 57, No. 8/S, 105-109, 2006.

13. Agilent 16454A Magnetic Material Test Fixture Operation and Service Manual,5th Ed., , No. 16454-90 Agilent Tech. Rep., Agilent Technologies, Inc., Palo Alto, CA, Jul. 2001.

14. Huang, R. and D. Zhang, "Application of mode matching method to analysis of axisymmetric coaxial discontinuity structures used in permeability and/or permittivity measurement," Progress In Electromagnetics Research, Vol. 67, 205-230, 2007.
doi:10.2528/PIER06083103

15. Huang, J., K. Wu, P. Morin, and C. Akgel, "Characterization of highly dispersive materials using composite coaxial cells: Electromagnetic analysis and wideband measurement," IEEE Trans. on MMT, Vol. 44, No. 5, 770-777, 1996.
doi:10.1109/22.493931

16. Zhang, D. M. and C. F. Foo, "Theoretical analysis of the electrical and magnetic field distribution in a toroidal core with circular cross section," IEEE Trans. on Mag., Vol. 33, No. 3, 1924-1931, Part 2, 1999.

17. Hacivelioglu, F. and A. Büyükaksoy, "Wiener-hopf analysis of finite-length impedance loading in the outer conductor of a coaxial waveguide," Progress In Electromagnetics Research B, Vol. 5, 241-251, 2008.
doi:10.2528/PIERB08022203

18. Jiang, H. and R.-M. Xu, "9.5 GHz 16λg delay line using multilayer LTCC," Progress In Electromagnetics Research Letters, Vol. 6, 175-182, 2009.
doi:10.2528/PIERL08122701

19. Lee, Y. C., "CPW-to-stripline vertical via transitions for 60 GHz LTCC SoP applications," Progress In Electromagnetics Research Letters, Vol. 2, 37-44, 2008.
doi:10.2528/PIERL07122805

20. Lee, Y. C. and T. W. Kim, "A low-loss patch LTCC bpf for 60 GHz system-on-package (SoP) applications," Progress In Electromagnetics Research Letters, Vol. 12, 183-189, 2009.
doi:10.2528/PIERL09110903

21. Gu, J., Y. Fan, and Y. Zhang, "A X-band 3-D SICC filter with low-loss and narrow band using LTCC technology," Journal of Electromagnetic Waves and Applications, Vol. 23, No. 8--9, 1093-1100, 2009.

22. Matters-Kammerer, M., et al. "Material propoerties and RF applications of high k and ferrite LTCC ceramics," Microelectronics and Reliability, 134-143, Jan. 2006.
doi:10.1016/j.microrel.2004.10.022

23. Slama, G., "Low-temperature sintering of Ni-Zn-Cu ferrite and its permeability spectra," Power Electronics and RF Applications, 30-34, Jan. 2003.

24. Wahlers, R. L., C. Y. D. Huang, M. R. Heinz, A. H. Feingold, J. Bielawski, and G. Slama, Low profile LTCC transformers, available at www.electroscience.com/publications/IMAPS2002-(1).pdf.

25. ESL ElectroScience, http://www.electroscience.com.

26. Schlomann, E., "Microwave behavior of partially magnetized ferrite," J. Appl. Phys., Vol. 41, No. 1, 204-214, 1970.
doi:10.1063/1.1658322

27. Tsutaoka, T., M. Ueshima, and T. Tokunaga, "Frequency dispersion and temperature variation of complex permeability of Ni-Zn ferrite composite materials," J. Appl. Phys., Vol. 78, No. 6, 3983-3991, 1995.
doi:10.1063/1.359919

28. Tsutaoka, T., "Frequency dispersion of complex permeability in Mn-Zn and Ni-Zn spinel ferrites and their composite materials,", Vol. 93, No. 5, 2789-2796, Mar. 2003.
doi:10.1063/1.1542651

29. Radonić, V., N. Blaž, and L. Živanov, "Measurement of complex permeability using short coaxial line reflection method," Acta Physica Polonica, Vol. 117, No. 4, 820-824, 2010.

30. MMG-Neosid, http://www.mmgca.com.