Vol. 107
Latest Volume
All Volumes
PIER 180 [2024] PIER 179 [2024] PIER 178 [2023] PIER 177 [2023] PIER 176 [2023] PIER 175 [2022] PIER 174 [2022] PIER 173 [2022] PIER 172 [2021] PIER 171 [2021] PIER 170 [2021] PIER 169 [2020] PIER 168 [2020] PIER 167 [2020] PIER 166 [2019] PIER 165 [2019] PIER 164 [2019] PIER 163 [2018] PIER 162 [2018] PIER 161 [2018] PIER 160 [2017] PIER 159 [2017] PIER 158 [2017] PIER 157 [2016] PIER 156 [2016] PIER 155 [2016] PIER 154 [2015] PIER 153 [2015] PIER 152 [2015] PIER 151 [2015] PIER 150 [2015] PIER 149 [2014] PIER 148 [2014] PIER 147 [2014] PIER 146 [2014] PIER 145 [2014] PIER 144 [2014] PIER 143 [2013] PIER 142 [2013] PIER 141 [2013] PIER 140 [2013] PIER 139 [2013] PIER 138 [2013] PIER 137 [2013] PIER 136 [2013] PIER 135 [2013] PIER 134 [2013] PIER 133 [2013] PIER 132 [2012] PIER 131 [2012] PIER 130 [2012] PIER 129 [2012] PIER 128 [2012] PIER 127 [2012] PIER 126 [2012] PIER 125 [2012] PIER 124 [2012] PIER 123 [2012] PIER 122 [2012] PIER 121 [2011] PIER 120 [2011] PIER 119 [2011] PIER 118 [2011] PIER 117 [2011] PIER 116 [2011] PIER 115 [2011] PIER 114 [2011] PIER 113 [2011] PIER 112 [2011] PIER 111 [2011] PIER 110 [2010] PIER 109 [2010] PIER 108 [2010] PIER 107 [2010] PIER 106 [2010] PIER 105 [2010] PIER 104 [2010] PIER 103 [2010] PIER 102 [2010] PIER 101 [2010] PIER 100 [2010] PIER 99 [2009] PIER 98 [2009] PIER 97 [2009] PIER 96 [2009] PIER 95 [2009] PIER 94 [2009] PIER 93 [2009] PIER 92 [2009] PIER 91 [2009] PIER 90 [2009] PIER 89 [2009] PIER 88 [2008] PIER 87 [2008] PIER 86 [2008] PIER 85 [2008] PIER 84 [2008] PIER 83 [2008] PIER 82 [2008] PIER 81 [2008] PIER 80 [2008] PIER 79 [2008] PIER 78 [2008] PIER 77 [2007] PIER 76 [2007] PIER 75 [2007] PIER 74 [2007] PIER 73 [2007] PIER 72 [2007] PIER 71 [2007] PIER 70 [2007] PIER 69 [2007] PIER 68 [2007] PIER 67 [2007] PIER 66 [2006] PIER 65 [2006] PIER 64 [2006] PIER 63 [2006] PIER 62 [2006] PIER 61 [2006] PIER 60 [2006] PIER 59 [2006] PIER 58 [2006] PIER 57 [2006] PIER 56 [2006] PIER 55 [2005] PIER 54 [2005] PIER 53 [2005] PIER 52 [2005] PIER 51 [2005] PIER 50 [2005] PIER 49 [2004] PIER 48 [2004] PIER 47 [2004] PIER 46 [2004] PIER 45 [2004] PIER 44 [2004] PIER 43 [2003] PIER 42 [2003] PIER 41 [2003] PIER 40 [2003] PIER 39 [2003] PIER 38 [2002] PIER 37 [2002] PIER 36 [2002] PIER 35 [2002] PIER 34 [2001] PIER 33 [2001] PIER 32 [2001] PIER 31 [2001] PIER 30 [2001] PIER 29 [2000] PIER 28 [2000] PIER 27 [2000] PIER 26 [2000] PIER 25 [2000] PIER 24 [1999] PIER 23 [1999] PIER 22 [1999] PIER 21 [1999] PIER 20 [1998] PIER 19 [1998] PIER 18 [1998] PIER 17 [1997] PIER 16 [1997] PIER 15 [1997] PIER 14 [1996] PIER 13 [1996] PIER 12 [1996] PIER 11 [1995] PIER 10 [1995] PIER 09 [1994] PIER 08 [1994] PIER 07 [1993] PIER 06 [1992] PIER 05 [1991] PIER 04 [1991] PIER 03 [1990] PIER 02 [1990] PIER 01 [1989]
2010-08-17
Data Independent Radar Beamforming Algorithms for Breast Cancer Detection
By
Progress In Electromagnetics Research, Vol. 107, 331-348, 2010
Abstract
Ultra wideband (UWB) Microwave imaging is one of the most promising emerging imaging technologies for breast cancer detection, and is based on the dielectric contrast between normal and cancerous tissues at microwave frequencies. UWB radar imaging involves illuminating the breast with a microwave pulse and reflected signals are used to determine the presence and location of significant dielectric scatterers, which may be representative of cancerous tissue within the breast. Beamformers are used to spatially focus the reflected signals and to compensate for path dependent attenuation and phase effects. While these beamforming algorithms have often been evaluated in isolation, variations in experimental conditions and metrics prompts the assessment of the beamformers on common anatomically and dielectrically representative breast models in order to effectively compare the performance of each. This paper seeks to investigate the following beamforming algorithms: Monostatic and Multistatic Delay-And-Sum (DAS), Delay-Multiply-And-Sum (DMAS) and Improved Delay-And-Sum (IDAS). The performance of each beamformer is evaluated across a range of appropriate metrics.
Citation
Dallan Byrne, Martin O'Halloran, Martin Glavin, and Edward Jones, "Data Independent Radar Beamforming Algorithms for Breast Cancer Detection," Progress In Electromagnetics Research, Vol. 107, 331-348, 2010.
doi:10.2528/PIER10061001
References

1. Society, A. C., Cancer facts and figures 2009, Tech. Rep., American Cancer Society, Atlanta, 2009.

2. Ferlay, J., P. Autier, M. Boniol, M. Heanue, M. Colombet, and P. Boyle, "Estimates of the cancer incidence and mortality in europe in 2006," Annals of Oncology, Vol. 18, 581-592, 2007.

3. Nass, S. L., I. C. Henderson, and J. C. Lashof, Mammography and Beyond: Developing Technologies for the Early Detection of Breast Cancer , National Academy Press, 2001.

4. Huynh, P. H., A. M. Jarolimek, and S. Daye, "The false-negative mammogram," RadioGraphics, Vol. 18, 1137-1154, 1998.

5. Hagness, S. C., A. Taflove, and J. E. Bridges, "Two-dimensional fdtd analysis of a pulsed microwave confocal system for breast cancer detection: Fixed focus and antenna array sensors," IEEE Transactions on Biomedical Engineering, Vol. 45, 1470-1479, 1998.

6. Li, X. and S. C. Hagness, "A confocal microwave imaging algorithm for breast cancer detection," IEEE Microwave and Wireless Communications Letters, Vol. 11, 130-132, 2001.

7. Fear, E. C., X. Li, S. C. Hagness, and M. A. Stuchly, "Confocal microwave imaging for breast cancer detection: Localization of tumors in three dimensions," IEEE Transactions on Biomedical Engineering, Vol. 47, 812-812, 2002.

8. Bond, E. J., X. Li, S. C. Hagness, and B. D. V. Veen, "Microwave imaging via space-time beamforming for early detection of breast cancer," IEEE Transactions on Antennas and Propagation, 1690-1705, 2003.

9. Kosmas, P. and C. M. Rappaport, "Time reversal with the fdtd method for microwave breast cancer detection,", Vol. 53, No. 7, 2317-2323, 2005.

10. Xie, Y., B. Guo, L. Xu, J. Li, and P. Stoica, "Multi-static adaptive microwave imaging for early breast cancer detection," IEEE Transactions on Biomedical Engineering, Vol. 53, 1647-1657, 2006.

11. Meaney, P. M., M. W. Fanning, D. Li, S. P. Poplack, and K. D. Paulsen, "A clinical prototype for active microwave imaging of the breast ," IEEE Trans. Microwave Theory Tech., Vol. 48, No. 11, 1841-1853, Nov. 2000.

12. Meaney, P. M., M. W. Fanning, T. Raynolds, C. J. Fox, Q. Fang, C. A. Kogel, S. P. Poplack, and K. D. Paulsen, "Initial clinical experience with microwave breast imaging in women with normal mammography," IEEE Trans. Microwave Theory Tech., Vol. 48, No. 11, 1841-1853, Nov. 2000.

13. Kruger, R. A., K. D. Miller, H. E. Reynolds, W. L. Kiser, D. R. Reinecke, and G. A. Kruger, "Breast cancer in vivo: Contrast enhancement with thermoacoustic ct at 434MHz --- Feasibility study ," Radiology, Vol. 216, No. 1, 279-283, 2000.

14. Zhao, M., J. D. Shea, S. C. Hagness, D. W. van der Weide, B. D. V. Veen, and T. Varghese, "Numerical study of microwave scattering in breast tissue via coupled dielectric and elastic contrasts," IEEE Antennas and Wireless Propagation Letters, Vol. 7, 247-250, 2008.

15. O'Halloran, M., E. Jones, and M. Glavin, "Quasi-multistatic mist beamforming for the early detection of breast cancer," IEEE Transactions on Biomedical Engineering, Vol. 57, No. 4, 830-840, Apr. 2010.

16. O'Halloran, M., M. Glavin, and E. Jones, "Effects of fibroglandular tissue distribution on data-independent beamforming algorithms," Progress In Electromagnetics Research, Vol. 97, 141-158, 2009.

17. Jossinet, J., "The impedivity of freshly excised human breast tissue," Physiol. Meas., Vol. 19, 61-75, 1998.

18. Gabriel, S., R. W. Lau, and C. Gabriel, "The dielectric properties of biological tissues: III. Parametric models for the dielectric spectrum of tissues ," Physics in Medicine and Biology, Vol. 41, 2271-2293, 1996.

19. Lazebnik, M., L. McCartney, D. Popovic, C. B. Watkins, M. J. Lindstrom, J. Harter, S. Sewall, A. Magliocco, J. H. Booske, M. Okoniewski, and S. C. Hagness, "A large-scale study of the ultrawideband microwave dielectric properties of normal breast tissue obtained from reduction surgeries," Physics in Medicine and Biology, Vol. 52, 2637-2656, 2007.

20. Lazebnik, M., D. Popovic, L. McCartney, C. B. Watkins, M. J. Lindstrom, J. Harter, S. Sewall, T. Ogilvie, A. Magliocco, T. M. Breslin, W. Temple, D. Mew, J. H. Booske, M. Okoniewski, and S. C. Hagness, "A large-scale study of the ultrawideband microwave dielectric properties of normal, benign and malignant breast tissues obtained from cancer surgeries," Physics in Medicine and Biology, Vol. 52, 6093-6115, 2007.

21. Conceicao, R., M. O'Halloran, M. Glavin, and E. Jones, "Comparison of planar and circular antenna configurations for breast cancer detection using microwave imaging," Progress In Electromagnetics Research, Vol. 99, 1-19, 2009.

22. Nilavalan, R., S. C. Hagness, and B. D. V. Veen, "Numerical investigation of breast tumour detection using multi-static radar," IEE Electronic Letters, Vol. 39, No. 25, 1787-1789.

23. Klemm, M., I. Craddock, J. Leendertz, A. Preece, and R. Benjamin, "Improved delay-and-sum beamforming algorithm for breast cancer detection ," International Journal of Antennas and Propogation, Vol. 2008, 9, 2008.

24. Lim, H. B., N. T. T. Nhung, E.-P. Li, and N. D. Thang, "Confocal microwave imaging for breast cancer detection: Delay-multiplyand sum image reconstruction algorithm," IEEE Transactions on Biomedical Engineering, Vol. 55, No. 6, 1697-1704, Jun. 2008.

25. Zastrow, E., S. K. Davis, M. Lazebnik, F. Kelcz, B. D. V. Veen, and S. C. Hagness, Database of 3d grid-based numerical breast phantoms for use in computational electromagnetics simulations , Department of Electrical and Computer Engineering University of Wisconsin-Madison, [Online], 2008, Available: http://uwcem.ece..

26. Zastrow, E., S. K. Davis, M. Lazebnik, F. Kelcz, B. D. V. Veen, and S. Hagness, "Development of anatomically realistic numerical breast phantoms with accurate dielectric properties for modeling microwave interactions with the human breast," IEEE Transactions on Biomedical Engineering, Vol. 55, No. 12, 2792-2800, Dec. 2008.

27. Davis, S. K., B. D. V. Veen, S. C. Hagness, and F. Kelcz, "Breast tumor characterization based on ultrawideband backscatter," IEEE Transactions on Biomedical Engineering, Vol. 55, No. 1, 237-246, 2008.

28. Muinonen, K., "Introducing the gaussian shape hypothesis for asteroids and comets ," Astronomy and Astrophysics, Vol. 332, 1087-1098, 1998.

29. Okoniewski, M., M. Mrozowski, and M. A. Stuchly, "Simple treatment of multi-term dispersion in fdtd," IEEE Microwave and Guided Wave Letters, Vol. 7, 121-123, 1997.

30. Gabriel, C., S. Gabriel, and E. Corthout, "The dielectric properties of biological tissues: I. literature survey," Phys. Med. Biol., Vol. 41, No. 11, 2231-2249, Nov. 1996.

31. Berenger, J. P., "A perfectly matched layer for the absorption of electromagnetic waves," Journal of Computational Physics, Vol. 114, 185-200, 1994.