Vol. 13
Latest Volume
All Volumes
PIERM 130 [2024] PIERM 129 [2024] PIERM 128 [2024] PIERM 127 [2024] PIERM 126 [2024] PIERM 125 [2024] PIERM 124 [2024] PIERM 123 [2024] PIERM 122 [2023] PIERM 121 [2023] PIERM 120 [2023] PIERM 119 [2023] PIERM 118 [2023] PIERM 117 [2023] PIERM 116 [2023] PIERM 115 [2023] PIERM 114 [2022] PIERM 113 [2022] PIERM 112 [2022] PIERM 111 [2022] PIERM 110 [2022] PIERM 109 [2022] PIERM 108 [2022] PIERM 107 [2022] PIERM 106 [2021] PIERM 105 [2021] PIERM 104 [2021] PIERM 103 [2021] PIERM 102 [2021] PIERM 101 [2021] PIERM 100 [2021] PIERM 99 [2021] PIERM 98 [2020] PIERM 97 [2020] PIERM 96 [2020] PIERM 95 [2020] PIERM 94 [2020] PIERM 93 [2020] PIERM 92 [2020] PIERM 91 [2020] PIERM 90 [2020] PIERM 89 [2020] PIERM 88 [2020] PIERM 87 [2019] PIERM 86 [2019] PIERM 85 [2019] PIERM 84 [2019] PIERM 83 [2019] PIERM 82 [2019] PIERM 81 [2019] PIERM 80 [2019] PIERM 79 [2019] PIERM 78 [2019] PIERM 77 [2019] PIERM 76 [2018] PIERM 75 [2018] PIERM 74 [2018] PIERM 73 [2018] PIERM 72 [2018] PIERM 71 [2018] PIERM 70 [2018] PIERM 69 [2018] PIERM 68 [2018] PIERM 67 [2018] PIERM 66 [2018] PIERM 65 [2018] PIERM 64 [2018] PIERM 63 [2018] PIERM 62 [2017] PIERM 61 [2017] PIERM 60 [2017] PIERM 59 [2017] PIERM 58 [2017] PIERM 57 [2017] PIERM 56 [2017] PIERM 55 [2017] PIERM 54 [2017] PIERM 53 [2017] PIERM 52 [2016] PIERM 51 [2016] PIERM 50 [2016] PIERM 49 [2016] PIERM 48 [2016] PIERM 47 [2016] PIERM 46 [2016] PIERM 45 [2016] PIERM 44 [2015] PIERM 43 [2015] PIERM 42 [2015] PIERM 41 [2015] PIERM 40 [2014] PIERM 39 [2014] PIERM 38 [2014] PIERM 37 [2014] PIERM 36 [2014] PIERM 35 [2014] PIERM 34 [2014] PIERM 33 [2013] PIERM 32 [2013] PIERM 31 [2013] PIERM 30 [2013] PIERM 29 [2013] PIERM 28 [2013] PIERM 27 [2012] PIERM 26 [2012] PIERM 25 [2012] PIERM 24 [2012] PIERM 23 [2012] PIERM 22 [2012] PIERM 21 [2011] PIERM 20 [2011] PIERM 19 [2011] PIERM 18 [2011] PIERM 17 [2011] PIERM 16 [2011] PIERM 14 [2010] PIERM 13 [2010] PIERM 12 [2010] PIERM 11 [2010] PIERM 10 [2009] PIERM 9 [2009] PIERM 8 [2009] PIERM 7 [2009] PIERM 6 [2009] PIERM 5 [2008] PIERM 4 [2008] PIERM 3 [2008] PIERM 2 [2008] PIERM 1 [2008]
2010-08-02
Artificial Neural Networks Approach in Microwave Filter Tuning
By
Progress In Electromagnetics Research M, Vol. 13, 173-188, 2010
Abstract
This paper presents a novel method of cavity filter tuning with the usage of an artificial neural network (ANN). The proposed method does not require information on the filter topology, and the filter is treated as a black box. In order to illustrate the concept, a feed-forward, multi-layer, non-linear artificial neural network with back propagation is applied. The method for preparing, learning and testing vectors consisting of sampled detuned scattering characteristics and corresponding tuning screw deviations is proposed. To collect the training vectors, the machine, an intelligent automatic filter tuning tool integrated with a vector network analyzer, has been built. The ANN was trained on the basis of samples obtained from a properly tuned filter. It has been proved that the usage of multidimensional approximation ability of an ANN makes it possible to map the characteristic of a detuned filter reflection in individual screw errors. Finally, after the ANN learning process, the tuning experiment on 6 and 11-cavity filters has been preformed, proving a very high efficiency of the presented method.
Citation
Jerzy Julian Michalski, "Artificial Neural Networks Approach in Microwave Filter Tuning," Progress In Electromagnetics Research M, Vol. 13, 173-188, 2010.
doi:10.2528/PIERM10053105
References

1. Simplified filter tuning using time domain, , HP Application, Santa Rosa, CA, Note 1287-8, 1999.
doi:10.1109/22.20035

2. Mirzai, A. R., C. F. N. Cowan, and T. M. Crawford, "Intelligent alignment of waveguide filters using a machine learning approach," IEEE Trans. Microwave Theory & Tech., Vol. 37, No. 1, 166-173, January 1989.
doi:10.1109/22.963147

3. Harscher, P. and R. Vahldieck, "Automated computer-controlled tuning of waveguide filters using adaptive network models," IEEE Trans. Microwave Theory & Tech., Vol. 49, No. 11, 2125-2130, November 2001.
doi:10.1109/TMTT.2002.805291

4. Miraftab, V. and R. R. Mansour, "Computer-aided tuning of microwave filters using fuzzy logic," IEEE Trans. Microwave Theory & Tech., Vol. 50, No. 12, 2781-2788, December 2002.

5. Cegielski, T. and J. Michalski, "Heuristic methods for automated microwave filter tuning," Proceedings of XVII International Conference on Microwave, Radar and Wireless Communications MIKON-2008, Vol. 3, 647-650, Poland, Wroclaw, May 19-21, 2008.
doi:10.1007/BF03037088

6. Amari, S. L., "Mathematical theory of neural learning," New Generation Computing, Vol. 8, 281-294, 1991.
doi:10.1016/0893-6080(89)90020-8

7. Hornik, K., M. Stinchcombe, and H. White, "Multilayer feedforward networks are universal approximators," Neural Networks, Vol. 2, 359-366, 1989.

8. Haykin, S., Neural Networks: A Comprehensive Foundation, Prentice Hall, Upper Ssaddle River, NJ, 1999.
doi:10.1137/1116025

9. Vapnik, V. N. and A. Chervonenkis, "On the uniform convergence of relative frequencies of events to their probabilities," Theory of Probability Appl., Vol. 16, 264-280, 1971.

10., Intelligent automatic filter tuning tool (IAFTT) is registered with Priority certificate #2516" (Hannover Cebit 2007), and patent pending European Patent Application No. P382895 assigned by Polish National Patent Office". More information on www.trimsoluti.

11. Yu, M. and W. C. Tang, "A fully automated filter tuning robots for wireless base station diplexers, workshop computer aided filter tuning," IEEE Int. Microwave Symposium, Philadelphia, June 8-13, 2003.
doi: --- Either ISSN/ISBN or Series/Volume title must be supplied.