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Abstract—This paper presents a novel method of cavity filter tuning
with the usage of an artificial neural network (ANN). The proposed
method does not require information on the filter topology, and the
filter is treated as a black box. In order to illustrate the concept,
a feed-forward, multi-layer, non-linear artificial neural network with
back propagation is applied. The method for preparing, learning and
testing vectors consisting of sampled detuned scattering characteristics
and corresponding tuning screw deviations is proposed. To collect the
training vectors, the machine, an intelligent automatic filter tuning
tool integrated with a vector network analyzer, has been built. The
ANN was trained on the basis of samples obtained from a properly
tuned filter. It has been proved that the usage of multidimensional
approximation ability of an ANN makes it possible to map the
characteristic of a detuned filter reflection in individual screw errors.
Finally, after the ANN learning process, the tuning experiment on 6
and 11-cavity filters has been preformed, proving a very high efficiency
of the presented method.

1. INTRODUCTION

At this juncture, after assembling a filter on factory lines there is the
necessity of tuning each filter separately. This process is manual work
done by an operator, who checks the appropriate parameters of a filter,
e.g., the scattering parameters. In order to reach the specification
goals, the adjustment of tunable elements has to be executed. In
the majority of cases, operators are not microwave engineers, and
they compare current (detuned) characteristics with the goal (ideal)
characteristics. Based on their experience, the engineers set tuning
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screw combinations on the position that eventually meets technical
requirements. It can take a few hours for an unskilled operator to
tune, e.g., 6-cavity filter. An engineer gains experience in the course
of tuning. After a few months, (having correctly tuned hundreds of
filters), the tuning time is decreased to about 20–30 minutes. The
global growth of telecommunications systems has a significant influence
on the number of produced microwave filters. The market demands the
search for new solutions in the filter production process that is low-
cost, short term and of high specification parameters. One way to
minimize labor costs is to automate the production line.

Numerous different methods concerning filter tuning algorithms
were presented in previous publications. In [1], filter tuning in time
domain is shown. The described method requires a correctly tuned
filter serving as a template and a skilled operator. In [2], a machine
learning system is proposed, which employs techniques for pattern
recognition and adaptive signal processing. In this method, a skilled
operator is still indispensable. The computer-controlled method of
tuning microwave filters proposed in [3]. In this work, an approximate
filter network model investigating the effects of input/output couplings
is used. The automatic tuning for three-pole resonator filter is
presented. The novel approach, for filter tuning, is shown in paper [4].
In this paper, an algorithm based on fuzzy logic is introduced, proving
that such a method can be helpful in the identification of the tuning
elements being the source of the detuning. Interesting tool ROBO-
CAT, for automated tuning, was presented in [11]. In this case the
algorithms are based on coupling matrix extraction method, time
domain and phase cloning. The new approach based on the direct
search methods was presented in [5]. It has been proved that the
described methods are very effective, but require many screw changes,
which is not recommended due to passive inter modulation (PIM)
problems.

This paper presents a new approach based on an artificial neural
network (ANN). The ANN has been designed in such a way that for
a detuned reflection characteristic, at its input, it generates the errors
for each screw separately, at the output. As a result, of minimizing
errors at the ANN output, the tuning of the filter is executed. The
tuning is finished after a single iteration on all tuning elements.

In the paper, the general concept of the algorithm is presented.
The main ideas of preparing an ANN that acts as a mapper of
detuned characteristics to corresponding screw errors are shown. The
physical implementation of the concept and the experimental results,
for two filters with different number of cavities, are demonstrated.
The conclusion is focused on the summary of the presented method
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describing strong and weak aspects of the presented approach.

2. GENERAL CONCEPT

Let us denote tuned filter characteristic by S0 ∈ RM and the
corresponding normalized tuning element positions by Z0 ∈ RM .
The relation between tuning element positions Z and filter frequency
characteristic S is a function dependence S = f(Z). On the whole,
for complex high order filters, the function f is very difficult or even
impossible to be defined in an analytical form. In the presented
concept, we will construct an operator A: S → ∆Z, where ∆Z is
the normalized increment of the tuning element positions. The A
operator, for each detuned filter frequency characteristic S, will return
the normalized increment of the tuning elements ∆Z. After applying
∆Z, on tuning element positions Z, we get a tuned filter with S0

characteristic. Thus, the increment ∆Z will satisfy S0 = f(Z + ∆Z).
In the process of construction of the operator A, the pairs of vectors
(Sx, ∆Zx) will be used, where ∆Zx = Z0−Zx. The increment ∆Zx is
defined as a difference between screw positions of the correctly tuned
filter Z0 and the screw positions for the detuned filter Zx, whereas Sx is
the corresponding frequency characteristic of detuned filter. Randomly
collected vector pairs (Sx, ∆Zx) will be used as training vectors for
the artificial neural network. Algorithms based on the artificial neural
networks require training process, before they are used to perform
the tasks they are designed for (like a human gains experience in the
course of tuning more filters). In the training process, both the learning
vectors and testing vectors are used in order to optimize ANN. The
ability of the ANN to do a specified task is measured as a learning error
and generalization error. The learning error is defined as the ability to
generate the desired outputs for the given input samples, used during
the training process of the ANN. Generalization is the ability of the
ANN to answer correctly for the inputs not used during the training
process. This feature makes the ANN universal multidimensional
approximator [6–8]. In the described method, the sampled detuned
reflection characteristics of S11 will be used as the input vectors. The
corresponding outputs will be the normalized screws deviations ∆Zx

(Fig. 1).
Once S characteristic is presented on the ANN input, the screws’

deviations ∆Z are generated on its output. After the correction the
screws’ positions the filter is tuned.

In order to train the ANN, the training vectors must be prepared.
The screw deviations can be presented as points in multidimensional
space, in a given distance from the center of the system of the



176 Michalski

ANN 
S11(1) 

 …  

S11(M)

∆Z(1) 

 … 

 

∆Z(N) 

 

Figure 1. ANN as a mapper
of detuned scattering character-
istics to screw errors.
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Figure 2. Sampled 3-dimensional
search space with the training
vectors lx.

coordinates. The center of the system represents the tuned filter, where
the screw’s deviations equal zero. All points in this multidimensional
space define the search space. In order to prepare the training vectors
for the ANN training, the search space must be sampled. From the
practical point of view, the numbers of training elements in the training
sets must be limited. Nevertheless, the learning elements number must
be high enough to ensure the generalization error on a satisfactory
level. The sampled search space dimension is determined by the tuning
elements number N . The maximum screw deviation is assumed as
±K. Consequently, the search space edge length is defined as 2K. In
Fig. 2, the 3-dimensional search space with the edge 2K is presented.
This shows the situation, where a 3 tuning elements filter is taken
into account. The lx are the points in the search space, representing
detuned filter screws values, during the detuning of the filter. In order
to sample the search space a discreet grid of the search space, has been
introduced. Here, the one screw-adjustment increment 1u as a grid
resolution needs to be defined.

2.1. Procedures for Building Training Vectors for an ANN

In order to prepare the training vectors, we propose the following
procedures:

1. Use correctly tuned filter,
2. Read the tuned characteristic samples, S0(i); i = 1, 2, . . .M(M =

2∗256 points of complex S characteristic) and corresponding screw
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positions W0(j); j = 1, 2, . . . N of tuned filter (the values of screws
positions W, in contrast to positions Z, are not normalized, they
are defined as multiple values of u). This screw positions will be
used for calculation of screws differences ∆W (j) (2), for detuned
filter, N is the number of the tuning elements of the filter.

3. Randomly detune a filter using the following formula

W (j) = W0(j) + ∆W (j) (1)

where
∆W (j) = RND[2 ∗K]−K (2)

K is maximum screw deviation as a multiple value of u, and
RND [X] is an operator returning random integer value from 0
to X.

4. Read the corresponding Sx of the detuned filter. This
characteristic defines the input vector in the ANN learning
process.

5. Store Sx as a sample of the input vector and normalized screws
increment ∆Zx, as a sample of the output vector, where

∆Zx(j) = ∆Wx(j)/(2K) + 0.5 (3)

is a condition that performs the transformation of screws
increments to the domain from 0 to 1.

6. Go to point 3, for creating new learning vector.
According to the above procedures, we obtain the vector pairs

defining the relation S → ∆Zx. The tuned screws position, either
in the process of preparing the training vectors, or during the tuning
process, is always the reference position, and this is the main idea of
the presented concept. Using these vector pairs, in the ANN learning
process, we create the ANN system generating the relative tuning screw
errors ∆Zx, for detuned characteristic S with the respect to positions
of the tuned filter. With this definition, if the ANN will respond with
zero vector ∆Zx, the tuning goal is reached.

Following definitions of learning error (4) and generalization error
(5), specify the mean error for the all screws. They were applied to
check the ANN learning and generalization ability respectively

L = 2 ∗K ∗
∑l

a=1

∑N

b=1
|W a

0L(b)−W a
xL(b)| /(l ∗N) (4)

G = 2 ∗K ∗
∑t

a=1

∑N

b=1
|W a

0T (b)−W a
xT (b)| /(t ∗N) (5)

where, l — learning elements number, t — testing elements number,
W a

0L – screw positions of the tuned filter, W a
xL — the screw positions of

the detuned filter used in the process of collecting the learning samples.
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Screw positions, of the tuned filter used in detuning process to
collect the testing samples, are defined as W a

0T . The screw positions,
during collecting the testing vectors, are defined as W a

xT . If we use
the same filter for collecting the learning and testing samples then
W a

0L = W a
xT .

From the practical point of view, in order to minimize the
generalization error, the training vectors number l should be as high
as possible. With the change of training vectors number, the change of
the hidden layer neurons number should follow. The exact dependences
between training vectors number and neurons number in a hidden
layer are very difficult to define. The theoretical estimation can be
done using Vapnik-Chervonenkis dimension [9], in practice this relation
should be chosen experimentally.

2.2. Selection of Learning Elements Number and Edge
Length of Search Space Used for Training Vectors
Preparation

The generalization abilities of the ANN depend on many parameters,
such as a quality and number of learning vectors, used in the learning
process. More of the ANN outputs (more network weights); more
learning vectors have to be sampled in the search space. In order to
allow the ANN to generalize at a certain level, a proper number of
learning elements have to be prepared. This number depends on the
dimension N and edge length 2K of the search space. It has to be
asserted that in order to keep the generalization error at a certain
level at changing search space dimension N and/or search space edge
2K, it is necessary to keep the density of learning samples at the same
level. Assuming L0 as a number of points (learning vectors), in N
dimensional search space (N — tuning elements number), the density
d0 can be defined as follows:

d0 =
L0

V0
(6)

where
V0 = (2K)N (7)

and V0 is the volume of N dimensional space, 2K is the length of the
edge of the N dimensional hypercube in the search space. Applying
(7) in (6), the density of L0 learning samples in N dimensional space
can be expressed as follows:

d0 = L0(2K)−N (8)
The relation (8) shows the influence on search space sampling density
with the change of the dimension of space (change of the tuning
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elements number N) and change of the length of the search space
edge K.

2.3. Extending the Edge Length of the Search Space

If the search space edge is longer, the filter is more detuned during the
preparation of the training vectors, and on the basis of these samples,
more detuned filters can be successfully tuned. Below is presented the
way of changing the number of learning samples with the change of
search space edge in order to get the learning vectors density fixed.
Using the definition of the training samples density (6) and volume of
the search space defined as (7), we define the dependence on a new
number of samples

L = L0(2k)N (9)

where k = Kn
K0

and Kn is a new half of the search space edge length.
Analyzing this dependence, we can conclude that using the samples
obtained from the search space with longer edge 2K, it allows tuning
more detuned filters, but it requires more samples to keep density at
the same level.

2.4. Extending the Search Space Dimension

Below there are the considerations on how to keep the density of
learning vectors fixed d0 with the change of search space dimension N .
Assuming L0 — as number of samples in N0 dimensional search space,
it is possible to define the density of samples as a d0 (7). Extending
the search space dimension N = N0 + 1, implies growth of a number
of samples in the search space with the following formula

L = L02K (10)
In order to keep the search space sampling density fixed, during the
extension of the search space dimension by n as N = N0 + n, the new
number of learning vectors must be sampled

L = L0(2K)n (11)
The more tuning elements a filter has, the more learning vectors have to
be sampled in the search space. The new number of learning elements
L is an exponential function dependence of the additional tuning screws
number n.

3. IMPLEMENTATION OF THE CONCEPT

In order to verify the presented concept, the experiments have been
performed. The device being tuned is a 17 cavity diplexer. In general,
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the diplexer is a passive device, which implements the frequency
domain multiplexing. The diplexer topology is depicted above in
Fig. 3. The cavities denoted by RXn represent the RX filter, and
TXn represent TX filter of the diplexer respectively. The RX filter
has one cross-coupling between the cavities: #2–#5, and TX filter
has two cross-couplings: between the cavities: #2–#5 and #5–#8.
All couplings and cross-couplings are fixed.

The two filters are multiplexed onto a third common port at an
antenna. In our experiment, the RX filter consists of 6 cavities and TX
filter consists of 11 cavities (Fig. 3). In the experiments below, we will
tune cavities only, and all the couplings are fixed. For collecting the
learning vectors, the intelligent automatic filter tuning tool [10] was
used. Block diagram of the tool is presented in Fig. 4, and its physical
implementation in Fig. 5.

TX1TX2 TX3 

TX4 TX5 TX9 TX10 TX11 

TX6 TX8 RX4 RX5 RX6 

RX3 RX2 RX1TX7 RX Filter

TX Filter

Antena

Figure 3. Diplexer used in the experiment.
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Figure 4. Tuning environment [10] — block diagram (PC — The
computer used for ANN processing and reading characteristics from
VNA and stepper motors control, SMC — stepper motor controller,
SM — stepper motor, HEAD — interconnects stepper motors and
filter screws, VNA — vector network analyzer, FILTER — microwave
filter).
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Figure 5. The physical implementation of the tuning environ-
ment [10].

This machine can change all filter screws’ positions simultaneously.
Screw positions are controlled from a PC, and appropriate scattering
characteristic is read from the vector network analyzer. The minimal
possible angle of the screw change is 1.8◦, but for this project it is
defined one screw-adjustment increment u equal to 18◦ of the minimum
screw change.

1u = 18◦ (12)

In practice the value of 1u depends on tuning elements sensitivity and
should be chosen experimentally.

3.1. Choosing the ANN Architecture

In order to verify the presented concept, a 3 layered feed-forward (FF)
network architecture (input, hidden and output layer) was chosen. The
number of neurons for input and output layers is determined by the
number of the samples of the reflection characteristics, and the number
of tuning elements respectively. The first input layer has 512 neurons
(256 complex frequency points). The hidden layer has 50 neurons. The
output layer has 6 neurons for RX filter (6 tuning elements), and 11 for
TX filter (11 tuning elements). The number of neurons, in the hidden
layer, must be chosen experimentally as a compromise between learning
time, and learning/generalization ability of the network. For ANN
learning the classical error back propagation with momentum method
is used. All presented experiment results were obtained using FF
network. The concept was also verified using the Radial Basis Function
ANN and Fuzzy Logic System (FLS) with subtractive clustering. Since
the results obtained for investigated systems were similar, we decided
to publish only these for ANN FF.
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3.2. Influence of the Learning Vectors Number on Learning
and Generalization Errors Level

The investigation has been carried out to verify how many learning
elements are necessary to achieve learning and generalization on
low enough level errors. During detuning the learning and testing
vectors were collected with the maximum screws deviation, assumed
as K = 20u, which reflects the screw change of the angle of +− 360
(deg). For each filter (RX, TX ) 2000 learning vectors: {Sl

L, ∆Z l
L},

l = 1, 2, . . . , 2000 were collected. The next 100 testing vectors are
collected to check the generalization ability during the learning process:
{St

T , ∆Zt
T }, t = 1, 2, . . . , 100. In the experiment, we will use RX filter

of diplexer. In the first step, the ANN was learned using only 25
learning elements, and in the following steps, the number of learning
elements was increased up to 1000 elements. The 100 testing vectors
in each step were the same.

Figure 6 shows the learning error, and Fig. 7 shows the
generalization error of the ANN, number of learning elements l as a
parameter. In the case where more learning vectors l are used, to
prepare the training examples, the generalization error is decreasing.
It can be concluded that using 500 or more learning samples, the
learned ANN will answer at the same level, for both samples used in the
learning process, and the samples not used for the network learning.
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3.3. Influence of the Tuning Elements Number on Learning
and Generalization Errors Level

In order to check to what extent the presented approach is effective, the
process of tuning of both RX and TX filter of diplexer is performed.
The ANN architecture is the same as in the previous consideration,
512 input layer neurons, 50 hidden layer neurons and 6 (10) output
layer neurons for RX and TX filters respectively. The number of the
input vectors for both RX and TX filters is 2000 for each filter. The
first 1000 are sampled in the search space of the length K = 10u, and
the following 1000 with K = 20u. The testing set has 100 elements,
(50 with K = 10u, and 50 with K = 20u). The search space has been
sampled randomly. The learning and generalization error curves for
RX, and TX filters are presented in Fig. 8. Having analyzed the errors’
curves, it can be concluded that for an RX filter both errors are at the
same level (both curves are undistinguishable), which implies, that the
number of samples gathered in the search space is high enough for the
ANN training. Observing the errors for a TX filter, it can be noticed
that the generalization error is at a higher level than the learning error,
which means that the ANN generalization abilities are at a lower level
in comparison with the ANN for an RX filter. The main reason of the
mentioned difference is the low number of learning vectors sampled in
the search space. The TX filter has 11 tuning elements and RX has
6 tuning elements. In order to achieve better generalization abilities
of the TX filter, the number of learning vectors should be higher,
according to dependence (11). In practice, for each filter type, the
training vectors number should be chosen experimentally by successive
adding the new vectors and verifying the tuning results.
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184 Michalski

3.4. ANN Tuning Experiments

As a result of applying detuned reflection characteristic S11(i) on the
ANN input, the network will respond on its output ∆Z(j). Considering
the reverse form of (3), screw errors ∆W (j)(u) could be determined.
Fig. 9 presents graphically the errors for all 6 screws of the detuned RX
filter. The graphical form of tuning elements deviation is very helpful
and intuitive in the tuning process. The tuning goal is to obtain the
zero response on the ANN output.

The tuning process of a filter is the minimization of the error on
the screws, successively one by one. In this process, in one tuning step,
we will change only one screw, minimizing the error generated by the
ANN for this screw exclusively.

Having settled the last screw, into a proper position, we get tuned
filter characteristic S0 and the tuning process is finished. Tables 1

Table 1. Screw deviations in [u] generated by ANN during the tuning
steps for RX filter.

Tuning step 1 2 3 4 5 6 7
Screw 1 −17 0 0 0 0 0 0
Screw 2 −15 −15 0 0 0 0 0
Screw 3 13 13 18 0 0 0 0
Screw 4 −13 −12 −12 −12 0 0 0
Screw 5 −6 −4 −3 −3 −4 0 0
Screw 6 16 15 15 15 15 15 0
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Figure 10. Reflection character-
istics during the tuning steps for
RX filter.
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and 2 show the screw errors of the tuning elements generated on the
ANN output in successive tuning steps, for an RX and a TX filter
respectively. The corresponding S11 characteristics are presented in
Figs. 10 and 11. The thin line characteristics are obtained during the
tuning steps.

The bold characteristic is obtained after the last step of tuning,
and it reflects the situation where the ANN responds with no errors
on its output. During the tuning, the order of the screws is of no
significance and can be randomly chosen. As a result of the final

Table 2. Screw deviations in [u] generated by ANN during the tuning
steps for TX filter.

Tuning
step

1 2 3 4 5 6 7 8 9 10 11 12

Screw
1

−10 −8 −5 −8 −9 −10 −10 −10 −10 −9 −8 0

Screw
2

5 6 6 4 1 −2 2 3 3 3 0 0

Screw
3

−14 −16 −15 −16 −15 −15 −15 −15 −15 0 0 0

Screw
4

−10 −4 6 −1 −1 −2 0 2 0 0 0 0

Screw
5

12 12 13 13 12 12 12 0 0 0 0 0

Screw
6

14 13 13 10 12 12 0 0 0 0 0 0

Screw
7

−10 −10 −10 −10 −9 0 0 0 0 0 0 0

Screw
8

−14 −14 −14 −14 0 0 0 0 0 0 0 0

Screw
9

−15 −15 −17 0 0 0 0 0 0 0 0 0

Screw
10

−16 −14 0 0 0 0 0 0 0 0 0 0

Screw
11

8 0 0 0 0 0 0 0 0 0 0 0
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tuning characteristic, it can be concluded that the obtained results
are significantly effective. The mean manual tuning time for an RX
filter (6 tuning elements) is about one minute and for a TX filter (11
tuning elements) — two minutes.

Sometimes, after certain tuning element correction, for example,
screw #5 there is a need to readjust a little some screws set before, e.g.,
#1, #2, #3 or #4, if ANN generates non-zero values on the outputs
associated with these screws. Very often, we have the situation during
tuning that, for example after tuning the screw #5 the ANN proposes
for the screw #4 to correct the value by +∆z, and after tuning the
next screw #6, the ANN generates for the screw #4 back the value
−∆z. It has been investigated that very often after adjusting screw
#R there is no need to readjust screws # < R, even if there are non-
zero values generated by ANN on these outputs. Considering this, the
tuning algorithm can work in two options. In the first option, ANN
generates always the outputs for all tuning elements regardless of the
currently tuned screw. In the second option, algorithm masks the ANN
outputs # < R, if the screw R is considered for tuning. The Tables 1
and 2 show the situation for the second option of the algorithm.

4. CONCLUSION

The novel filter tuning method, based on the artificial neural networks,
has been proposed. One of the most important features of presented
approach is that the filter is treated as a black box, no information
on the filter topology is necessary in the algorithm customization.
The way of preparing input and output vectors, for the ANN training
process, has been described. It has been proved and demonstrated
that using multidimensional approximation ability of the ANN, it is
possible to map the detuned filter scattering characteristics to the
corresponding screw errors, creating a very efficient tool for tuning.
It has been suggested that the density of the sampled learning vectors,
in the search space, influences the ANN generalization error most
significantly. The dependences on the learning vectors density with
the change of the search space dimension and with the edge length of
the search space have been defined. Using this presented method, the
mean time of manual tuning of 11 cavities filter takes about 2 minutes,
instead of 20–30 minutes by an experienced tuner. With the usage of
the introduced intelligent automatic filter tuning tool [10], where all
tuning elements can be changed simultaneously, it can take even less
than 5 seconds. However, mean time is about 20 seconds. Tuning time
of the whole diplexer (both RX and TX filters) is about 1 minute.
The performance of alternative solution [11] is about 30 minutes for
the diplexer of similar complexity.
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Performing the tuning experiments, with large volume of filters, it
has been experienced that although ANN responded with zero output
after tuning, almost all filters required the small fine tuning. It has
been observed that the algorithm works best if the cavities screws are
taken in the process of tuning, and the couplings screws are pretuned.

The ANN used in these experiments was learned based on the
samples from one filter only of the considered type (RX/TX ). This
presented method was verified on many filters of the same type. It has
been observed that based on such “poor” samples not all other filters
were properly tuned. This limitation is the result of filter differences
and relates to all tuning methods that can be found in publications.
To avoid this disadvantage, in our method, learning samples from more
than one filter should be collected. It has been proved that the ANN
gains experience if more filters take part in preparing learning samples.
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Errata to ARTIFICIAL NEURAL NETWORKS
APPROACH IN MICROWAVE FILTER TUNING
by J. J. Michalski, in Progress In Electromagnetics Research M, Vol. 13,
pp. 173–188, 2010

Page 175, General Concept, first sentence:

Old text:

Let us denote tuned filter characteristic by S0 ∈ RM and the
corresponding normalized tuning element positions by Z0 ∈ RM .

New text:

Let us denote tuned filter characteristic by S0 ∈ RM and the
corresponding normalized tuning element positions by Z0 ∈ RN .

Page 177, Last paragraph

Old text:

Following definitions of learning error (4) and generalization error
(5), specify the mean error for the all screws. They were applied to
check the ANN learning and generalization ability respectively

L = 2 ∗K ∗
∑l

a=1

∑N

b=1
|W a

0L(b)−W a
xL(b)| /(l ∗N) (5)

G = 2 ∗K ∗
∑t

a=1

∑N

b=1
|W a

0T (b)−W a
xT (b)| /(t ∗N) (6)

where, l — learning elements number, t — testing elements number,
W a

0L — screw positions of the tuned filter, W a
xL — the screw positions

of the detuned filter used in the process of collecting the learning
samples.

Screw positions, of the tuned filter used in detuning process to
collect the testing samples, are defined as W a

0T . The screw positions,
during collecting the testing vectors, are defined as W a

xT . If we use
the same filter for collecting the learning and testing samples then
W a

0L = W a
xT .
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New text:

Following definitions of learning error (4) and generalization error
(5), specify the mean error for the all screws. They were applied to
check the ANN learning and generalization ability respectively

L = 2 ∗K ∗
∑l

a=1

∑N

b=1
|W a

0L(b)−W a
xL(b)| /(l ∗N) (5)

G = 2 ∗K ∗
∑t

a=1

∑N

b=1
|W a

0T (b)−W a
xT (b)| /(t ∗N) (6)

where, l — learning elements number, t — testing elements number,
W a

0L — screw positions of the tuned filter — known proper value,
W a

xL — the screw positions generated by ANN, for a given reflection
characteristic.

Screw positions, of the tuned filter used in detuning process to
collect the testing samples, are defined as W a

0T — known proper
value. The screw positions generated by ANN, for a given reflection
characteristic, during collecting the testing vectors, are defined as W a

xT .
If we use the same filter for collecting the learning and testing samples
then W a

0L = W a
xT .


