Vol. 14
Latest Volume
All Volumes
PIERM 130 [2024] PIERM 129 [2024] PIERM 128 [2024] PIERM 127 [2024] PIERM 126 [2024] PIERM 125 [2024] PIERM 124 [2024] PIERM 123 [2024] PIERM 122 [2023] PIERM 121 [2023] PIERM 120 [2023] PIERM 119 [2023] PIERM 118 [2023] PIERM 117 [2023] PIERM 116 [2023] PIERM 115 [2023] PIERM 114 [2022] PIERM 113 [2022] PIERM 112 [2022] PIERM 111 [2022] PIERM 110 [2022] PIERM 109 [2022] PIERM 108 [2022] PIERM 107 [2022] PIERM 106 [2021] PIERM 105 [2021] PIERM 104 [2021] PIERM 103 [2021] PIERM 102 [2021] PIERM 101 [2021] PIERM 100 [2021] PIERM 99 [2021] PIERM 98 [2020] PIERM 97 [2020] PIERM 96 [2020] PIERM 95 [2020] PIERM 94 [2020] PIERM 93 [2020] PIERM 92 [2020] PIERM 91 [2020] PIERM 90 [2020] PIERM 89 [2020] PIERM 88 [2020] PIERM 87 [2019] PIERM 86 [2019] PIERM 85 [2019] PIERM 84 [2019] PIERM 83 [2019] PIERM 82 [2019] PIERM 81 [2019] PIERM 80 [2019] PIERM 79 [2019] PIERM 78 [2019] PIERM 77 [2019] PIERM 76 [2018] PIERM 75 [2018] PIERM 74 [2018] PIERM 73 [2018] PIERM 72 [2018] PIERM 71 [2018] PIERM 70 [2018] PIERM 69 [2018] PIERM 68 [2018] PIERM 67 [2018] PIERM 66 [2018] PIERM 65 [2018] PIERM 64 [2018] PIERM 63 [2018] PIERM 62 [2017] PIERM 61 [2017] PIERM 60 [2017] PIERM 59 [2017] PIERM 58 [2017] PIERM 57 [2017] PIERM 56 [2017] PIERM 55 [2017] PIERM 54 [2017] PIERM 53 [2017] PIERM 52 [2016] PIERM 51 [2016] PIERM 50 [2016] PIERM 49 [2016] PIERM 48 [2016] PIERM 47 [2016] PIERM 46 [2016] PIERM 45 [2016] PIERM 44 [2015] PIERM 43 [2015] PIERM 42 [2015] PIERM 41 [2015] PIERM 40 [2014] PIERM 39 [2014] PIERM 38 [2014] PIERM 37 [2014] PIERM 36 [2014] PIERM 35 [2014] PIERM 34 [2014] PIERM 33 [2013] PIERM 32 [2013] PIERM 31 [2013] PIERM 30 [2013] PIERM 29 [2013] PIERM 28 [2013] PIERM 27 [2012] PIERM 26 [2012] PIERM 25 [2012] PIERM 24 [2012] PIERM 23 [2012] PIERM 22 [2012] PIERM 21 [2011] PIERM 20 [2011] PIERM 19 [2011] PIERM 18 [2011] PIERM 17 [2011] PIERM 16 [2011] PIERM 14 [2010] PIERM 13 [2010] PIERM 12 [2010] PIERM 11 [2010] PIERM 10 [2009] PIERM 9 [2009] PIERM 8 [2009] PIERM 7 [2009] PIERM 6 [2009] PIERM 5 [2008] PIERM 4 [2008] PIERM 3 [2008] PIERM 2 [2008] PIERM 1 [2008]
2010-10-07
Study of Electromagnetic Ion-Cyclotron Instability in a Magnetoplasma
By
Progress In Electromagnetics Research M, Vol. 14, 147-161, 2010
Abstract
Excitation of electromagnetic ion-cyclotron instability in the magneto plasma in the presence of perpendicular A.C. electric field for a generalized distribution function for background cold electrons and hot ion plasma has been studied. This distribution function is reducible to anisotropic and loss-cone type for different values of spectral index j. The particle trajectories have been estimated and used to find the dispersion relation and growth rate by using the method of characteristic solutions. Temporal electromagnetic ion cyclotron instability for various plasma parameters has been studied. The role of choice of parameters, distribution function and simultaneous presence of a.c. electric field is studied for excitation of electromagnetic ion cyclotron instability. The results have been used to explain the satellite observations of AMPTE/CCE and compared with earlier work done for temperature anisotropy and other types of distribution functions using other techniques.
Citation
Rama Pandey, and D. K. Singh, "Study of Electromagnetic Ion-Cyclotron Instability in a Magnetoplasma," Progress In Electromagnetics Research M, Vol. 14, 147-161, 2010.
doi:10.2528/PIERM10052501
References

1. Anderson, B. J., R. E. Erlandson, and L. J. Zanetti, "A statistical study of PC1-2 magnetic pulsations in the equatorial magnetosphere, 1, equatorial occurrence distributions," J. Geophys. Res., Vol. 97, 3075, 1992.
doi:10.1029/91JA02706

2. Anderson, B. J., R. E. Erlandson, and L. J. Zanetti, "A statistical study of PC1-2 magnetic pulsations in the equatorial magnetosphere, 2, wave properties," J. Geophys. Res., Vol. 97, 3089, 1992.
doi:10.1029/91JA02697

3. Thorne, R. M. and R. B. Horne, "Energy transfer between energetic ring current H+ and O+ by electromagnetic ioncyclotron waves," J. Geophys. Res., Vol. 99, 17275, 1994.
doi:10.1029/94JA01007

4. Horne, R. B. and R. M. Thorne, "Convective instabilities of electromagnetic ion-cyclotron waves in the outer magnetosphere," J. Geophys. Res., Vol. 99, 17259, 1994.
doi:10.1029/94JA01259

5. Young, D. T., J. Balsiger, P. Eberhardt, A. Ghielmetti, and H. Rosenbauer, "Discovery of He+2 and O+2 ions of terrestrial origin in the outer magnetosphere," Geophys. Res. Lett., Vol. 4, 561, 1977.
doi:10.1029/GL004i012p00561

6. Mauk, B. H., "Helium resonance and dispersion effects on geostationary Alfven/ion-cyclotron waves," J. Geophys. Res., Vol. 87, 9107-9119, 1982.
doi:10.1029/JA087iA11p09107

7. Gomberoff, L. and R. Neira, "Convective growth rate of ion-cyclotron waves in a H+-He+ and H+-He+-O+ plasma," J. Geophys. Res., Vol. 88, 2170, 1983.
doi:10.1029/JA088iA03p02170

8. Gendrin, R., M. Ashour-Abdalla, Y. Omura, and K. Quest, "Linear analysis of ion-cyclotron interaction in a multi component plasma," J. Geophys. Res., Vol. 89, 9119, 1984.
doi:10.1029/JA089iA10p09119

9. Khazanov, G. V., K. V. Gamayunov, and V. K. Jordanova, "Self consistent model of magnetospheric ring current and electromagnetic ion cyclotron wave: The May 2--7, 1998 storm," J. Geophys. Res., Vol. 108, No. A12, 1419, 2003.
doi:10.1029/2003JA009856

10. Khazanov, G. V., K. V. Gamayunov, D. L. Gallagher, and J. U. Kozyra, "Self consistent model of magnetospheric ring current and propagating electromagnetic ion cyclotron waves: Waves in multi-ion magnetosphere," J. Geophys. Res., Vol. 111, 11833, 2006.

11. Gary, S. P., "The mirror and ion-cyclotron anisotropy instabilities," J. Geophys. Res., Vol. 97, 8519, 1992.
doi:10.1029/92JA00299

12. Gary, S. P., S. A. Fuselier, and B. J. Anderson, "Ion anisotropy instabilities in the magneto sheath," J. Geophys. Res., Vol. 98, 1484, 1993.

13. Tanaka, M., "Simulations of heavy ion heating by electromagnetic ion cyclotron waves driven by proton temperature anisotropics," J. Geophys. Res., Vol. 90, 137, 1985.

14. Omura, Y., M. Ashour-Abdala, R. Gendrin, and K. Quest, "Heating of thermal helium in the equtoral magnetosphere: A simulation study," J. Geophys. Res., Vol. 90, 8281, 1985.
doi:10.1029/JA090iA09p08281

15. Machida, S., C. K. Geeretz, and T. Hada, "The electromagnetic ion-cyclotron instability in the lotorns," J. Geophysic. Lett., Vol. 93, 7545, 1988.

16. Denton, R. E. and M. K. Hudson, "Loss-cone driven ion-cyclotron waves in the magnetosphere," J. Geophys. Res., Vol. 79, 12098, 1992.

17. Xue, S., R. M. Thorne, and D. Summers, "Damping of oblique electromagnetic ion-cyclotron waves the earths magnetosphere," J. Geophys. Res., Vol. 101, 1996.

18. Xue, S. and R. M. Thorne, "Parametric study of electromagnetic ion-cyclotron instability in the earths magnetosphere," J. Geophys. Res., Vol. 101, 15467, 1996.
doi:10.1029/96JA01087

19. Vasyliunas, V. M., "A survey of low-energy electron waves," J. Geophys. Res., Vol. 73, 2839, 1968.
doi:10.1029/JA073i009p02839

20. Christon, B. J., D. G. Mitchell, D. J. Williams, L. A. Frank, C. Y. Hung, and T. E. Eastman, "Energy spectra of plasma sheet ions and electrons from 50 eV to 1MeV during plasma temperature transitions," J. Geophys. Res., Vol. 93, 2562, 1988.
doi:10.1029/JA093iA04p02562

21. Christon, B. J., D. G. Mitchell, and D. J. Williams, "Spectral characteristics of plasma sheet ion and electron populations during disturbed geomagnetic conditions," J. Geophys. Res., Vol. 96, 1, 1991.
doi:10.1029/90JA01633

22. Summers, D. and R. M. Thorne, "Relativistic electron pitch angle scattering by electromagnetic ion cyclotron wave during geomagnetic strom," J. Geophys. Res., Vol. 108, 9489, 2003.

23. Anderson, B. J., R. E. Denton, D. C. Hamilton, S. A. Fuselier, and R. J. Strangeway, "Observational test of local proton-cyclotron instability in earth magnetosphere," J. Geophys. Res., Vol. 101, 21527, 1997.

24. Anderson, B. J. and S. A. Fuselier, "Magnetic pulsations from 0.1 to 0.4 Hz and associated plasma properties in the earth's sub solar magneto sheath and plasma deplation layer," J. Geophys. Res., Vol. 98, 1461, 1993.
doi:10.1029/92JA02197

25. Mozer, F. S., R. B. Torbert, U. V. Fahleson, C. G. Falthammar, A. Gonfalone, A. Pedersen, and C. T. Russel, "Electric field measurement in the solar wind bow shock, magnetosheath, magnetopause and magnetosphere space," Sci. Rev., Vol. 22, 791, 1978.

26. Wygant, J. R., M. Bensadoum, and F. S. Mozer, "Electric field measurements at subcritical oblique bow shock crossings," J. Geophys. Res., Vol. 92, 17109, 1987.

27. Lindqvist, P. A. and F. S. Mozer, "The average tangential electric field at the noon magnetopause," J. Geophys. Res., Vol. 17, 137, 1990.

28. Perrant, S., R. Gendrin, P. Robert, A. Roux, C. Devilledary, and D. Jones, "ULF waves observed with magnetic and electric sensors on GEOS-1," Space Science Rev., Vol. 22, 347, 1978.

29. Heppner, J. P., N. C. Maynard, and T. L. Aggson, "Early results from ISEE-1 electric field measurements," Space Science Rev., Vol. 22, 777, 1978.

30. Ahirwar, G., P. Verma, and M. S. Tiwari, "Electromagnetic ion cyclotron instability in the presence of a parallel electric field with general loss-cone distribution function --- Particle aspect analysis," Ann. Geophys., Vol. 24, 1919-1930, 2006.
doi:10.5194/angeo-24-1919-2006

31. Ishida, J., S. Kokubum, and R. L. McPherron, "Substorm effects on spectral structures of PC-1 waves at synchronous orbit," J. Geophys. Res., Vol. 92, 143, 1987.
doi:10.1029/JA092iA01p00143

32. Misra, K. D. and R. S. Pandey, "Generation of Whistler emission by injection of hot electrons in the presence of a.c. electric field in the magnetosphere," J. Geophys. Res., Vol. 100, 19405, 1995.
doi:10.1029/95JA01083

33. Pandey, R. S. and K. D. Misra, "Excitation of oblique whistler waves in magnetosphere and in interplanetary space at 1AU," Earth Planets & Space, Vol. 54, 159, 2002.

34. Fried, B. D. and S. D. Conte, The Plasma Dispersion Function , Academic, 1961.

35. Anderson, B. J. and S. A. Fuselier, "Response of thermal ions to electromagnetic ion-cyclotron waves," J. Geophys. Res., Vol. 79, 19413, 1994.
doi:10.1029/94JA01235

36. Roux, A., S. Perrant, J. L. Rauch, C. Devilledary, G. Kremser, A. Korth, and D. T. Young, "Wave-interactions near Ω+He observed on board GEOS-1 and 2, generation of ion cyclotron waves and heating of He+ ions," J. Geophys. Res., Vol. 87, 8174, 1982.
doi:10.1029/JA087iA10p08174

37. Roux, J. L. and A. Roux, "Ray tracing of ULF waves in a multicomponent magnetospheric plasma: Consequences for the generation mechanism of ion cyclotron waves," J. Geophys. Res., Vol. 87, 8191, 1982.

38. Cuperman, S. and R. W. Landau, "On the enhancement of the whistler mode instability in the magnetosphere by cold plasma injection," J. Geophys. Res.,, Vol. 79, 128, 1974.
doi:10.1029/JA079i001p00128

39. Cuperman, S., "Electromagnetic kinetic instabilities in multicomponent space plasmas: Theoretical predictions and computer simulation experiments," Rev. Geophys., Vol. 19, 307, 1981.
doi:10.1029/RG019i002p00307

40. Kennel, C. F. and H. E. Petchek, "Limit on stably trapped particle fluxes," J. Geophys. Res., Vol. 71, 1, 1966.

41. Misra, K. D. and T. Haile, "Effect of a.c. electric field on the whistler mode instability in the magnetosphere," J. Geophys. Res., Vol. 98, 9297, 1993.
doi:10.1029/92JA02558

42. Huang, L., J. G. Hawkins, and L. C. Lee, "On the generation of pulsating aurora by the loss-cone driven whistler instability in the Equatorial region," J. Geophys. Res., Vol. 95, 3893, 1990.
doi:10.1029/JA095iA04p03893

43. Kudrin, A. V., E. Y. Petrov, G. A. Kyriaeou, and T. M. Zaboronkova, "Insulated cyclindrical antena in cold magnetoplasma," Progress In Electromagnetics Research, Vol. 53, 135-166, 2005.
doi:10.2528/PIER04090101

44. Pandey, R. S., R. P. Pandey, K. M. Singh, and N. M. Mishra, "Cold plasma injection on VLF wave mode for relativistic magnetoplasma with a.c. electric field," Progress In Electromagnetics Research C, Vol. 2, 217-232, 2008.
doi:10.2528/PIERC08022501

45. Pandey, R. S., R. P. Pandey, A. K. Srivastava, S. M. Karim, and Hariom, "The electromagnetic ion-cyclotron instability in the presence of a.c. electric field for Lorentzian Kappa," Progress In Electromagnetics Research M, Vol. 1, 207-217, 2008.
doi:10.2528/PIERM08032601