1. Bassiri, S., C. H. Pappas, and N. Engheta, "Electromagnetic wave propagation through a dielectric-chiral interface and through a chiral slab," J. Opt. Soc. Amer. A, Vol. 5, No. 9, 1450-1459, 1988.
doi:10.1364/JOSAA.5.001450
2. Worasawate, D., J. R. Mautz, and E. Arvas, "Electromagnetic scattering from an arbitrarily shaped three-dimensional homogeneous chiral body," IEEE Trans. Antennas Propag., Vol. 51, No. 5, 1077-1084, 2003.
doi:10.1109/TAP.2003.811501
3. Akyurtlu, A. and D. H. Werner, "A novel dispersive FDTD formulation for modeling transient propagation in chiral metamaterials," IEEE Trans. Antennas Propag., Vol. 52, 2267-2276, 2004.
doi:10.1109/TAP.2004.834153
4. Barba, I., A. Grande, A. C. L. Cabeceira, and J. Represa, "A multiresolution model of transient microwave signals in dispersive chiral media," IEEE Trans. Antennas Propag., Vol. 54, 2808-2812, 2006.
doi:10.1109/TAP.2006.880764
5. Demir, V., A. Z. Elsherbeni, and E. Arvas, "FDTD formulation for dispersive chiral media using the Z transform method," IEEE Trans. Antennas Propag., Vol. 53, 3374-3384, 2005.
doi:10.1109/TAP.2005.856328
6. Pereda, J. A., A. Grande, O. Gonzalez, and A. Vegas, "FDTD modeling of chiral media by using the Mobius transformation techniques," IEEE Antennas Wireless Propag. Lett., Vol. 5, 327-330, 2006.
doi:10.1109/LAWP.2006.878902
7. Kuzu, L., V. Demir, A. Z. Elsherbeni, and E. Arvas, "Electromagnetic scattering from arbitrarily shaped chiral objects using the ¯nite di®erence frequency domain method," Progress In Electromagnetics Research, Vol. 67, 1-24, 2007.
doi:10.2528/PIER06083104
8. Grande, A., J. A. Pereda, O. Gonzalez, and A. Vegas, "On the equivalence of several FDTD formulations for modeling electromagnetic wave propagation in double-negative metamaterials," IEEE Antennas Wireless Propag. Lett., Vol. 6, 324-327, 2007.
doi:10.1109/LAWP.2007.899921
9. Zhang, Y.-Q. and D.-B. Ge, "A unified FDTD approach for electromagnetic analysis of dispersive objects," Progress In Electromagnetics Research, Vol. 96, 155-172, 2009.
doi:10.2528/PIER09072603
10. Liu, S.-H., C.-H. Liang, W. Ding, L. Chen, and W.-T. Pan, "Electromagnetic wave propagation through a slab waveguide of uniaxially anisotropic dispersive metamaterial," Progress In Electromagnetics Research, Vol. 76, 467-475, 2005.
11. Yang, H. W., "A FDTD analysis on magnetized plasma of Epstein distribution and reflection calculation," Computer Physics Communication, Vol. 180, 55-60, 2009.
doi:10.1016/j.cpc.2008.08.007
12. Yang, H. W., R. S. Chen, and Y. Zhou, "SO-FDTD analysis on magnetized plasma," Int. J. Infrared Milli. Waves, Vol. 28, 751-758, 2007.
doi:10.1007/s10762-007-9246-4
13. Duan, X., H. W. Yang, X. Kong, and H. Liu, "Analysis on the calculation of plasma medium with parallel SO-FDTD method," ETRI Journal, Vol. 31, 387-392, 2009.
doi:10.4218/etrij.09.0108.0698
14. Ma, L.-X., H. Zhang, H.-X. Zheng, and C.-X. Zhang, "Shift-operator FDTD method for anisotropic plasma in kDB coordinates system ," Progress In Electromagnetics Research M, Vol. 12, 51-65, 2010.
doi:10.2528/PIERM09122901
15. Lakhtakia, A., V. K. Varadan, and V. V. Varadan, "Timeharmonic electromagnetic fields in chiral media," Lecture Notes n Physics, Vol. 335, Springer-Verlag, New York, 1989.
16. Ramadan, O., "Addendum to: `A FDTD analysis on magnetized plasma of Epstein distribution and reflection calculation Computer Physics Communications Vol. 180, No. 1, 55-60, 2009. A short comment on the equivalence of the shift-operator FDTD method and the bilinear frequency approximation technique for modeling dispersive electromagnetic applications," Computer Physics Communications, Vol. 181, 1275-1276, 2010.
doi:10.1016/j.cpc.2010.03.002
17. Proakis , J. G. and D. G. Manolakis, Digital Signal Processing: Principles, Algorithms and Applications, 3rd Ed., Prentice Hall International Editions, 1996.