Vol. 13
Latest Volume
All Volumes
PIERM 130 [2024] PIERM 129 [2024] PIERM 128 [2024] PIERM 127 [2024] PIERM 126 [2024] PIERM 125 [2024] PIERM 124 [2024] PIERM 123 [2024] PIERM 122 [2023] PIERM 121 [2023] PIERM 120 [2023] PIERM 119 [2023] PIERM 118 [2023] PIERM 117 [2023] PIERM 116 [2023] PIERM 115 [2023] PIERM 114 [2022] PIERM 113 [2022] PIERM 112 [2022] PIERM 111 [2022] PIERM 110 [2022] PIERM 109 [2022] PIERM 108 [2022] PIERM 107 [2022] PIERM 106 [2021] PIERM 105 [2021] PIERM 104 [2021] PIERM 103 [2021] PIERM 102 [2021] PIERM 101 [2021] PIERM 100 [2021] PIERM 99 [2021] PIERM 98 [2020] PIERM 97 [2020] PIERM 96 [2020] PIERM 95 [2020] PIERM 94 [2020] PIERM 93 [2020] PIERM 92 [2020] PIERM 91 [2020] PIERM 90 [2020] PIERM 89 [2020] PIERM 88 [2020] PIERM 87 [2019] PIERM 86 [2019] PIERM 85 [2019] PIERM 84 [2019] PIERM 83 [2019] PIERM 82 [2019] PIERM 81 [2019] PIERM 80 [2019] PIERM 79 [2019] PIERM 78 [2019] PIERM 77 [2019] PIERM 76 [2018] PIERM 75 [2018] PIERM 74 [2018] PIERM 73 [2018] PIERM 72 [2018] PIERM 71 [2018] PIERM 70 [2018] PIERM 69 [2018] PIERM 68 [2018] PIERM 67 [2018] PIERM 66 [2018] PIERM 65 [2018] PIERM 64 [2018] PIERM 63 [2018] PIERM 62 [2017] PIERM 61 [2017] PIERM 60 [2017] PIERM 59 [2017] PIERM 58 [2017] PIERM 57 [2017] PIERM 56 [2017] PIERM 55 [2017] PIERM 54 [2017] PIERM 53 [2017] PIERM 52 [2016] PIERM 51 [2016] PIERM 50 [2016] PIERM 49 [2016] PIERM 48 [2016] PIERM 47 [2016] PIERM 46 [2016] PIERM 45 [2016] PIERM 44 [2015] PIERM 43 [2015] PIERM 42 [2015] PIERM 41 [2015] PIERM 40 [2014] PIERM 39 [2014] PIERM 38 [2014] PIERM 37 [2014] PIERM 36 [2014] PIERM 35 [2014] PIERM 34 [2014] PIERM 33 [2013] PIERM 32 [2013] PIERM 31 [2013] PIERM 30 [2013] PIERM 29 [2013] PIERM 28 [2013] PIERM 27 [2012] PIERM 26 [2012] PIERM 25 [2012] PIERM 24 [2012] PIERM 23 [2012] PIERM 22 [2012] PIERM 21 [2011] PIERM 20 [2011] PIERM 19 [2011] PIERM 18 [2011] PIERM 17 [2011] PIERM 16 [2011] PIERM 14 [2010] PIERM 13 [2010] PIERM 12 [2010] PIERM 11 [2010] PIERM 10 [2009] PIERM 9 [2009] PIERM 8 [2009] PIERM 7 [2009] PIERM 6 [2009] PIERM 5 [2008] PIERM 4 [2008] PIERM 3 [2008] PIERM 2 [2008] PIERM 1 [2008]
2010-06-16
Shift-Operator Finite Difference Time Domain Analysis of Chiral Medium
By
Progress In Electromagnetics Research M, Vol. 13, 29-40, 2010
Abstract
Shift-Operator Finite difference Time Domain (SO-FDTD) method is introduced as a new efficient technique for simulating electromagnetic wave interaction with chiral medium. The dispersive properties of this medium are presented as polynomials of . These polynomials are converted to time domain by replacing by the time derivative operator. Then this time derivative operator is converted to the corresponding time shift operator which is used directly to obtain the corresponding update equations of electric and magnetic field components. The resulting update equations do not require time convolution or additional vector components. The present analysis does not require also any transformation. Significant improvement is obtained in memory requirements by using this method while the computational time is nearly the same compared with other similar techniques like Z-transformation FDTD.
Citation
Ahmed Attiya, "Shift-Operator Finite Difference Time Domain Analysis of Chiral Medium," Progress In Electromagnetics Research M, Vol. 13, 29-40, 2010.
doi:10.2528/PIERM10052403
References

1. Bassiri, S., C. H. Pappas, and N. Engheta, "Electromagnetic wave propagation through a dielectric-chiral interface and through a chiral slab," J. Opt. Soc. Amer. A, Vol. 5, No. 9, 1450-1459, 1988.
doi:10.1364/JOSAA.5.001450

2. Worasawate, D., J. R. Mautz, and E. Arvas, "Electromagnetic scattering from an arbitrarily shaped three-dimensional homogeneous chiral body," IEEE Trans. Antennas Propag., Vol. 51, No. 5, 1077-1084, 2003.
doi:10.1109/TAP.2003.811501

3. Akyurtlu, A. and D. H. Werner, "A novel dispersive FDTD formulation for modeling transient propagation in chiral metamaterials," IEEE Trans. Antennas Propag., Vol. 52, 2267-2276, 2004.
doi:10.1109/TAP.2004.834153

4. Barba, I., A. Grande, A. C. L. Cabeceira, and J. Represa, "A multiresolution model of transient microwave signals in dispersive chiral media," IEEE Trans. Antennas Propag., Vol. 54, 2808-2812, 2006.
doi:10.1109/TAP.2006.880764

5. Demir, V., A. Z. Elsherbeni, and E. Arvas, "FDTD formulation for dispersive chiral media using the Z transform method," IEEE Trans. Antennas Propag., Vol. 53, 3374-3384, 2005.
doi:10.1109/TAP.2005.856328

6. Pereda, J. A., A. Grande, O. Gonzalez, and A. Vegas, "FDTD modeling of chiral media by using the Mobius transformation techniques," IEEE Antennas Wireless Propag. Lett., Vol. 5, 327-330, 2006.
doi:10.1109/LAWP.2006.878902

7. Kuzu, L., V. Demir, A. Z. Elsherbeni, and E. Arvas, "Electromagnetic scattering from arbitrarily shaped chiral objects using the ¯nite di®erence frequency domain method," Progress In Electromagnetics Research, Vol. 67, 1-24, 2007.
doi:10.2528/PIER06083104

8. Grande, A., J. A. Pereda, O. Gonzalez, and A. Vegas, "On the equivalence of several FDTD formulations for modeling electromagnetic wave propagation in double-negative metamaterials," IEEE Antennas Wireless Propag. Lett., Vol. 6, 324-327, 2007.
doi:10.1109/LAWP.2007.899921

9. Zhang, Y.-Q. and D.-B. Ge, "A unified FDTD approach for electromagnetic analysis of dispersive objects," Progress In Electromagnetics Research, Vol. 96, 155-172, 2009.
doi:10.2528/PIER09072603

10. Liu, S.-H., C.-H. Liang, W. Ding, L. Chen, and W.-T. Pan, "Electromagnetic wave propagation through a slab waveguide of uniaxially anisotropic dispersive metamaterial," Progress In Electromagnetics Research, Vol. 76, 467-475, 2005.

11. Yang, H. W., "A FDTD analysis on magnetized plasma of Epstein distribution and reflection calculation," Computer Physics Communication, Vol. 180, 55-60, 2009.
doi:10.1016/j.cpc.2008.08.007

12. Yang, H. W., R. S. Chen, and Y. Zhou, "SO-FDTD analysis on magnetized plasma," Int. J. Infrared Milli. Waves, Vol. 28, 751-758, 2007.
doi:10.1007/s10762-007-9246-4

13. Duan, X., H. W. Yang, X. Kong, and H. Liu, "Analysis on the calculation of plasma medium with parallel SO-FDTD method," ETRI Journal, Vol. 31, 387-392, 2009.
doi:10.4218/etrij.09.0108.0698

14. Ma, L.-X., H. Zhang, H.-X. Zheng, and C.-X. Zhang, "Shift-operator FDTD method for anisotropic plasma in kDB coordinates system ," Progress In Electromagnetics Research M, Vol. 12, 51-65, 2010.
doi:10.2528/PIERM09122901

15. Lakhtakia, A., V. K. Varadan, and V. V. Varadan, "Timeharmonic electromagnetic fields in chiral media," Lecture Notes n Physics, Vol. 335, Springer-Verlag, New York, 1989.

16. Ramadan, O., "Addendum to: `A FDTD analysis on magnetized plasma of Epstein distribution and reflection calculation Computer Physics Communications Vol. 180, No. 1, 55-60, 2009. A short comment on the equivalence of the shift-operator FDTD method and the bilinear frequency approximation technique for modeling dispersive electromagnetic applications," Computer Physics Communications, Vol. 181, 1275-1276, 2010.
doi:10.1016/j.cpc.2010.03.002

17. Proakis , J. G. and D. G. Manolakis, Digital Signal Processing: Principles, Algorithms and Applications, 3rd Ed., Prentice Hall International Editions, 1996.