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Abstract—Shift-Operator Finite difference Time Domain (SO-
FDTD) method is introduced as a new efficient technique for
simulating electromagnetic wave interaction with chiral medium. The
dispersive properties of this medium are presented as polynomials of
jω. These polynomials are converted to time domain by replacing jω
by the time derivative operator. Then this time derivative operator
is converted to the corresponding time shift operator which is used
directly to obtain the corresponding update equations of electric
and magnetic field components. The resulting update equations do
not require time convolution or additional vector components. The
present analysis does not require also any transformation. Significant
improvement is obtained in memory requirements by using this method
while the computational time is nearly the same compared with other
similar techniques like Z-transformation FDTD.

1. INTRODUCTION

Chiral materials have received a great interest due to their unique
properties that include magnetoelectric coupling and polarization
rotation. From theoretical point of view, chiral medium represents a
general form for different materials including lossy dispersive material
and meta-materials. On the other hand, from practical point of view,
chiral medium is a good candidate for different applications like wave
depolarizers and anti-reflection surfaces.

Different approaches have been developed for studying electromag-
netic wave interaction with structures composed of or include chiral
media [1–7]. These approaches include analytical solutions for simple
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problems like plane wave propagation through a chiral slab and chiro-
waveguide [1]. Integral equation formulation combined with MoM so-
lution was introduced for solving electromagnetic wave interaction with
more complicated configuration [2]. FDTD was also introduced as an
efficient tool for studying similar problems over a wide frequency range
in a single simulation. FDTD is also more suitable for studying the
short pulse response for these problems [3–6, 8–10]. This short pulse
response represents an important characterization parameter for newly
developing applications related to UWB.

One of the earliest rigorous formulations for solving chiral media
problems by using FDTD was introduced by Akyurtlu and Werner [3].
Their analysis is based on calculating the dispersive properties of chiral
medium as temporal convolution integrations. A similar approach was
introduced by Barba et al. [4] where they converted the problem to
discrete time convolution. Demir et al. [5] introduced another approach
based on using Z transformation to treat these dispersive properties.
The advantage of this approach is that it does not require evaluating
convolution integration. However, it requires introducing additional
intermediate vector components. It is also based on calculating electric
and magnetic flux densities separately, then obtaining electric and
magnetic field components. Thus the total problem requires much
more storage requirements. A similar approach was introduced by
Pereda et al. [6] where they used Mobius transformation which is
mainly based on Laplace transformation. Then the Laplace s operator
is replaced with the corresponding Z transform operator to formulate
the problem in a discrete time form. Grande et al. [8] showed the
equivalence of these different formulations for similar problems related
to metamaterials.

Recently, a new form of FDTD has been developed to simulate
wave propagation in anisotropic lossy dispersive plasma. This method
is based on introducing a time-shift operator that can replace the time
derivative operator. The basic theory of this shift-operator FDTD is
discussed in [11–14]. The main idea of this method is to present the
dispersive relations between electric and magnetic fields in frequency
domain as polynomials of jω. These polynomials are converted to
time domain by replacing jω by a time derivative operator. Then
this time derivative operator is replaced by the corresponding shift
operator. Thus, the problem is converted into polynomials of this shift
operator. The order of each term of these polynomials corresponds
to the number of delayed time steps of this term. By arranging these
terms, one can obtain the required update equations for the dispersive
medium. Recently, Ramadan [16] has shown that this shift-operator
FDTD is simply equivalent to the bilinear frequency approximation
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technique which is used in the field of digital signal processing [17].
In this paper, we apply this SO-FDTD to simulate wave

propagation in chiral medium. The first part in the following section
presents a brief discussion of SO-FDTD. Then the formulation of the
SO-FDTD formulation for chiral medium is discussed in detail. In
Section 3, a comparison between the result of this SO-FDTD and
analytical technique is presented for transmission and reflection of
normally incident pulsed plane wave on a chiral slab as an example
for validating the accuracy of this technique.

2. THEORY

2.1. Basic Theory of Shift-operator FDTD

To show the basic idea of shift-operator FDTD we start with a simple
differential equation

y(t) =
df(t)
dt

. (1)

This equation can be presented in a central difference form as follows:

yn+
1
2 =

fn+1 − fn

∆t
(2)

Assuming that the time-updated variables are related to previous
values by a simple linear relation as follows:

fn+1 = ztf
n (3)

where zt represents the time shift operator. By applying (3) in (2), it
can be shown that

yn+
1
2 = h (zt − 1) fn (4)

where h = 1/∆t. Then by comparing (4) with (1) it is shown that the
time differential operator can be represented in terms of the time shift
operator as:

d/dt ≡ h (zt − 1) (5)

It should be noted here that this shift operator has quite similar form
to Z-transformation discussed in [5]. However, the usage of the present
shift operator does not require performing any transformation to the
Z-domain as it is shown in the following parts of this paper.

For problems with dispersive characteristics that can be presented
as polynomials of jω, each jω can be replaced by d/dt and subsequently
it can be replaced by h(zt − 1). Thus, by a simple algebraic treatment,
this dispersive relation can be presented as a polynomial of zt. This
polynomial is normalized such that its maximum order is zero. Each
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term of this normalized polynomial represents v-steps time delayed
value of the corresponding variable where v is the order of the time
shift operator of this term. This means that

z−v
t fn = fn−v (6)

2.2. Shift-operator FDTD Analysis of Chiral Medium

There are three equivalent constitutive relations which are used to
describe chiral medium [15]. The first one represents relations between
electric and magnetic flux densities (D and B) and the corresponding
field intensities (E and H) which is known as Tellegen relation. The
second representation introduces electric flux density D as combination
between electric field intensity E and magnetic flux density B and vice
versa for the magnetic flux density. This representation is known as
Post relation. The third representation, known as Drude-Born-Fedorov
relation, introduces a relation between the electric flux density and
both electric field intensity and its curl. It introduces another similar
relation between the magnetic flux density and both magnetic field
intensity and its curl. Based on the first representation, Maxwell’s
curl equations in time-harmonic forms are given by [5]:

∇×E = −jωµ (ω)H + ωκ (ω)
√

µoεo E (7a)
∇×H = jωε (ω)E + ωκ (ω)

√
µoεo H (7b)

where the above constitutive coefficients are:

ε (ω) = ε0

(
ε∞ +

(εs − ε∞) ω2
ε

ω2
ε + 2jωεξεω − ω2

)
(8a)

µ (ω) = µ0

(
µ∞ +

(µs − µ∞)ω2
µ

ω2
µ + 2jωµξµω − ω2

)
(8b)

κ (ω) =
τκω2

κω

ω2
κ + 2jωκξκω − ω2

(8c)

where κ is the chirality parameter, ε∞ and µ∞ are the relative
permittivity and relative permeability at infinite frequency, εs and
µs are the relative permittivity and relative permeability at zero
frequency, ωε, ωµ and ωκ are the resonant angular frequencies of the
permittivity, permeability and chirality respectively, and ξε, ξµ and ξκ

are the corresponding damping coefficients.
Based on (7b), (8a) and (8b), Ampere’s curl equation can be

presented as function of ω as follows:

∇×H = jωεo

(
ε∞ +

(εs − ε∞) ω2
ε

ω2
ε + 2jωεξεω − ω2

)
E + ω

τκω2
κω

ω2
κ + 2jωκξκω − ω2

√
µoεo H (9)
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This equation can be arranged as follows:
(
(jω)2+2ωεξε (jω)+ω2

ε

)(
(jω)2+2ωκξκ (jω)+ω2

κ

)
∇×H

=
(
(jω)2+2ωκξκ (jω)+ω2

κ

)(
εoε∞ (jω)3+2ωεξεεoε∞ (jω)2

+ω2
εεoεs(jω)

)
E−

(
(jω)2+2ωεξε(jω)+ω2

ε

)(
τκω2

κ

√
µoεo(jω)

2
)
H (10)

which can be directly presented as a polynomial form of jω as follows:
4∑

v=0

bvε (jω)v (∇×H) =
5∑

v=0

avε (jω)vE−
4∑

v=0

cvε (jω)vH (11a)

Similarly, Faraday’s curl equation presented by Eq. (7a) can also be
presented as a polynomial form of jω as follows:

4∑

v=0

bvµ (jω)v (∇×E) = −
5∑

v=0

avµ (jω)vH−
4∑

v=0

cvµ (jω)vE (11b)

where the coefficients of these polynomials are given by:

b0ϑ = ω2
ϑω2

κ (12a)
b1ϑ = 2ωϑωκ (ξϑωκ + ξκωϑ) (12b)
b2ϑ =

(
ω2

ϑ + ω2
κ + 4ωϑξϑωκξκ

)
(12c)

b3ϑ = 2 (ωϑξϑ + ωκξκ) (12d)
b4ϑ = 1 (12e)

a0ϑ = 0 (13a)
a1ϑ =

(
ω2

ϑϑ0ϑsω
2
κ

)
(13b)

a2ϑ = 2ωϑϑ0

(
ξϑϑ∞ω2

κ+ξκϑsωκωϑ

)
(13c)

a3ϑ =
(
ϑ0ϑ∞ω2

κ+4ωεξϑϑ0ϑ∞ωκξκ+ω2
ϑϑ0ϑs

)
(13d)

a4ϑ = 2ϑ0ϑ∞ (ωκξκ + ωϑξϑ) (13e)
a5ϑ = ϑ0ϑ∞ (13f)

c0ϑ = c1ϑ = 0 (14a)
c2ϑ = ω2

ϑτκω2
κ

√
µ0ε0 (14b)

c3ϑ = 2ωϑξϑτκω2
κ

√
µ0ε0 (14c)

c4ϑ = τκω2
κ

√
µ0ε0 (14d)

where ϑ is either ε or µ.
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By replacing jω by the corresponding time shift operator (zt− 1),
(11) can be rewritten as:

4∑
v=0

bvε(h (zt−1))v (∇×H)=
5∑

v=0

avε(h (zt−1))vE−
4∑

v=0

cvε(h (zt−1))vH (15a)

4∑
v=0

bvµ(h (zt−1))v (∇×E)=−
5∑

v=0

avµ(h (zt−1))vH−
4∑

v=0

cvµ(h (zt−1))vE (15b)

Equation (15) can be rearranged to be in the form of polynomials of
zt as follows:

4∑

v=0

βvεz
v
t (∇×H) =

5∑

v=0

αvεz
v
t E−

4∑

v=0

γvεz
v
t H (16a)

4∑

v=0

βvµzv
t (∇×E) = −

5∑

v=0

αvµzv
t H−

4∑

v=0

γvµzv
t E (16b)

where the coefficients of these polynomials are given by:



α0ϑ

α1ϑ

α2ϑ

α3ϑ

α4ϑ

α5ϑ




=




−1 1 −1 1 −1
5 −4 3 −2 1
−10 6 −3 1 0
10 −4 1 0 0
−5 1 0 0 0
1 0 0 0 0







a5ϑh5

a4ϑh4

a3ϑh3

a2ϑh2

a1ϑh


 (17a)




β0ϑ

β1ϑ

β2ϑ

β3ϑ

β4ϑ


 =




1 −1 1 −1 1
−4 3 −2 1 0
6 −3 1 0 0
−4 1 0 0 0
1 0 0 0 0







b4ϑh4

b3ϑh3

b2ϑh2

b1ϑh
b0ϑ


 (17b)




γ0ϑ

γ1ϑ

γ2ϑ

γ3ϑ

γ4ϑ


 =




1 −1 1
−4 3 −2
6 −3 1
−4 1 0
1 0 0







c4ϑh4

c3ϑh3

c2ϑh2


 (17c)

where ϑ is either ε or µ. By using (16) and applying the time shift
operation of (6) one can obtain that

En+1 =−
4∑

v=0

αvε

α5ε
En+v−4+

4∑
v=0

βvε

α5ε

(
∇×Hn+v−3

1
2

)
+

4∑
v=0

γvε

α5ε
Hn+v−3

1
2 (18a)

Hn+1
2 =−

4∑
v=0

αvµ

α5µ
Hn+v−4 1

2 −
4∑

v=0

βvµ

α5µ

(∇×En+v−4)−
4∑

v=0

γvµ

α5µ
En+v−4 (18b)
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Then, by performing the spatial curl operator in a finite difference
form one can obtain directly the update equations for both electric and
magnetic field components. As examples for these update equations,

En+1

x,i,j+
1
2
, k + 1

2

=
4∑

v=0

βvε

α5ε




H
n+v−3

1
2

z,i,j+1,k+
1
2

−H
n+v−3

1
2

z,i,j,k+
1
2

∆y
−

H
n+v−3

1
2

y,i,j+
1
2
, k + 1

−H
n+v−3

1
2

y,i,j+
1
2
, k

∆z




−
4∑

v=0

αvε

α5ε
En+v−4

x,i,j+
1
2
, k + 1

2

+

4∑
v=0

γvµ

8α5µ

(
H

n+v−3
1
2

x,i+
1
2
, j, k

+ H
n+v−3

1
2

x,i+
1
2
, j + 1, k

+H
n+v−3

1
2

x,i+
1
2
, j + 1, k + 1

+ H
n+v−3

1
2

x,i+
1
2
, j, k + 1

+ H
n+v−3

1
2

x,i− 1
2
, j, k

+ H
n+v−3

1
2

x,i− 1
2
, j + 1, k

+H
n+v−3

1
2

x,i− 1
2
, j + 1, k + 1

+ H
n+v−3

1
2

x,i− 1
2
, j, k + 1

)
(19a)

H
n+

1
2

y,i,j+
1
2
, k

=−
4∑

v=0

βvµ

α5µ


−

En+v−4

z,i+
1
2
, j+ 1

2
, k
−En+v−4

z,i− 1
2
, j+ 1

2
, k

∆x
+

En+v−4

x,i,j+
1
2
, k+ 1

2

−En+v−4

x,i,j+
1
2
, k− 1

2

∆z




−
4∑

v=0

αvµ

α5µ
H

n+v−4
1
2

y,i,j+
1
2
, k
−

4∑
v=0

γvµ

8α5µ

(
En+v−4

y,i+
1
2
, j+1, k+ 1

2

+ En+v−4

y,i− 1
2
, j+1, k+ 1

2

+En+v−4

y,i− 1
2
, j+1, k− 1

2

+En+v−4

y,i+
1
2
, j+1, k− 1

2

+ En+v−4

y,i+
1
2
, j, k+ 1

2

+ En+v−4

y,i− 1
2
, j, k+ 1

2

+En+v−4

y,i− 1
2
, j, k − 1

2

+ En+v−4

y,i+
1
2
, j, k − 1

2

)
(19b)

The remaining four field components can be obtained in a similar way.
By comparing these updating equations with the corresponding

ones in [5] it can be noted that the present forms depends only on
electric and magnetic field components only without the need to use
other update equations for electric and magnetic flux densities or other
additional intermediate vector components. Another important point
is that both forms require storing previous field components. However,
the present technique uses previous field components in direct way
without the need to combine them in other intermediate components.
This property makes the present forms more suitable to be extended for
parallel computation [10]. It is also found that the present approach
requires storing five temporal states for each field component while
the approach of [5] requires storing seven parameters for each field
component. On the other hand, the present approach requires storing
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thirty two coefficients which are represented by (17) while the Z-
transform FDTD in [5] requires storing only nine coefficients which
include chiral medium parameters. However, these coefficients are
calculated and stored only one time for a homogenous chiral medium.
Thus, this increase in the coefficients in the present approach does not
represent a real overload on its memory requirements.

3. RESULTS AND DISCUSSIONS

In this section, we discuss a sample result for the present technique to
show its validity and to compare it with the previous other techniques.
It should be noted that the present analysis is based on 3-D FDTD
formulation. However, to show a comparison with analytical solution,
the present example is limited to 1-D problem of wave propagation
through an infinite slab of chiral medium.

The parameters of the chiral medium are the same as in [5] as
follows:

εr∞ = 2, εrs = 5, ωε = 2π × 2× 109 rad/s, ξε = 0.5

µr∞ = 1.1, µrs = 1.8, ωµ = 2π × 2× 109 rad/s, ξµ = 0.5

ωκ = 2π × 2× 109 rad/s, ξκ = 0.3, τκ =
0.5
ωκ

(20)

A normally incident pulse is assumed to be a first time derivative
Gaussian pulse of x polarized field as follows:

Ex inc(t) =
(

t− 4T0

T0

)
exp

[(
t− 4T0

T0

)2
]

V/m (21)

where T0 = 0.25 ns. The chiral slab has a thickness of 10mm.
The problem is simulated as a 1-D problem along the z-axis. The
spatial discretization is chosen to be dz = 1 mm and the time step is
dt = 1.6666 ps. The observation point is 3 mm away from the interface
of the chiral slab. Figs. 1 and 2 show comparisons between SO-FDTD
and analytical solution for both transmitted and reflected pulsed plane
waves. The same results are exactly obtained by using Z-transform
FDTD but they are not presented here to obtain clear figures. We
obtained an excellent agreement between the three results. The
computational time of SO-FDTD and Z-transform FDTD was found to
be nearly identical. Thus, SO-FDTD does not introduce a significant
improvement in this point. However, the storage requirements for the
chiral part of SO-FDTD are decreased by nearly 75% compared with
Z-transform FDTD. It should be noted that the reflected wave from
a chiral slab does not include cross polarized component [1]. This is
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also verified numerically by using SO-FDTD in Fig. 2. It can also be
noted that the early response of the reflected wave has narrow temporal
width while the late response and the transmitted wave has wider
temporal responses. This can be explained due to dispersive properties

Figure 1. Transmitted pulsed
plane wave through a chiral slab
of thickness 10 mm. The observa-
tion point is located in free space
on the other side of the slab at
3mm from the interface of the
slab. Parameter of the chiral slab
are given by (20).

Figure 2. Reflected pulsed plane
wave due to the chiral slab of
Fig. 1 at 3mm from the interface
of the slab.

(a) (b)

Figure 3. Co-polarized and cross-polarized transmission coefficients
of the chiral slab of Fig. 1 in (dB). (a) Co-polarized transmission
coefficient. (b) Cross-polarized transmission coefficient.
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Figure 4. Reflection coefficient of the chiral slab of Fig. 1 in (dB).

of this chiral medium that attenuate the high frequency components of
incident pulse. This property is quite clear in the multiple reflections
that correspond to the late response of the reflection coefficient and also
in the transmitted pulse. On the other hand, the early response of the
reflected wave is not affected by these dispersive attenuating properties
since it starts directly at the interface of the chiral slab. Finally, Figs. 3
and 4 show the same comparisons for the same chiral slab in frequency
domain. It can be noticed the good agreement between the analytical
solution and numerical solution obtained by using SO-FDTD.

4. CONCLUSION

A new efficient 3D finite difference time formulation based on time
shift operator is used to simulate electromagnetic wave interaction
with dispersive chiral medium. The resulting update equations depend
only on electric and magnetic field components. There are no
additional intermediate vector components, temporal convolution or
transformations. The present technique shows a good improvement
in memory requirements while keeping on the accuracy and the
computational time compared with other similar methods.
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