Vol. 23
Latest Volume
All Volumes
PIERB 109 [2024] PIERB 108 [2024] PIERB 107 [2024] PIERB 106 [2024] PIERB 105 [2024] PIERB 104 [2024] PIERB 103 [2023] PIERB 102 [2023] PIERB 101 [2023] PIERB 100 [2023] PIERB 99 [2023] PIERB 98 [2023] PIERB 97 [2022] PIERB 96 [2022] PIERB 95 [2022] PIERB 94 [2021] PIERB 93 [2021] PIERB 92 [2021] PIERB 91 [2021] PIERB 90 [2021] PIERB 89 [2020] PIERB 88 [2020] PIERB 87 [2020] PIERB 86 [2020] PIERB 85 [2019] PIERB 84 [2019] PIERB 83 [2019] PIERB 82 [2018] PIERB 81 [2018] PIERB 80 [2018] PIERB 79 [2017] PIERB 78 [2017] PIERB 77 [2017] PIERB 76 [2017] PIERB 75 [2017] PIERB 74 [2017] PIERB 73 [2017] PIERB 72 [2017] PIERB 71 [2016] PIERB 70 [2016] PIERB 69 [2016] PIERB 68 [2016] PIERB 67 [2016] PIERB 66 [2016] PIERB 65 [2016] PIERB 64 [2015] PIERB 63 [2015] PIERB 62 [2015] PIERB 61 [2014] PIERB 60 [2014] PIERB 59 [2014] PIERB 58 [2014] PIERB 57 [2014] PIERB 56 [2013] PIERB 55 [2013] PIERB 54 [2013] PIERB 53 [2013] PIERB 52 [2013] PIERB 51 [2013] PIERB 50 [2013] PIERB 49 [2013] PIERB 48 [2013] PIERB 47 [2013] PIERB 46 [2013] PIERB 45 [2012] PIERB 44 [2012] PIERB 43 [2012] PIERB 42 [2012] PIERB 41 [2012] PIERB 40 [2012] PIERB 39 [2012] PIERB 38 [2012] PIERB 37 [2012] PIERB 36 [2012] PIERB 35 [2011] PIERB 34 [2011] PIERB 33 [2011] PIERB 32 [2011] PIERB 31 [2011] PIERB 30 [2011] PIERB 29 [2011] PIERB 28 [2011] PIERB 27 [2011] PIERB 26 [2010] PIERB 25 [2010] PIERB 24 [2010] PIERB 23 [2010] PIERB 22 [2010] PIERB 21 [2010] PIERB 20 [2010] PIERB 19 [2010] PIERB 18 [2009] PIERB 17 [2009] PIERB 16 [2009] PIERB 15 [2009] PIERB 14 [2009] PIERB 13 [2009] PIERB 12 [2009] PIERB 11 [2009] PIERB 10 [2008] PIERB 9 [2008] PIERB 8 [2008] PIERB 7 [2008] PIERB 6 [2008] PIERB 5 [2008] PIERB 4 [2008] PIERB 3 [2008] PIERB 2 [2008] PIERB 1 [2008]
2010-07-13
Design of Time-Modulated Linear Arrays with a Multi-Objective Optimization Approach
By
Progress In Electromagnetics Research B, Vol. 23, 83-107, 2010
Abstract
Time-modulated antenna arrays attracted the attention of researchers for the synthesis of low/ultra-low side lobes in recent past. This article proposes a Multi-objective Optimization (MO) framework for the design of time-modulated linear antenna arrays with ultra low maximum Side Lobe Level (SLL), maximum Side Band Level (SBL) and main lobe Beam Width between the First Nulls (BWFN). In contrast to the conventional optimization-based methods that attempt to minimize a weighted sum of maximum SLL, SBL, and BWFN we treat these as three different objectives that are to be achieved simultaneously and use one of the best known Multi-Objective Evolutionary Algorithms (MOEAs) of current interest called MOEA/D-DE (Decomposition based MOEA with Differential Evolution operator) to determine the best compromise among these three objectives. Unlike the single-objective approaches, the MO approach provides greater flexibility in the design by yielding a set of equivalent final solutions from which the user can choose one that attains a suitable trade-off margin as per requirements. We compared time-modulated antenna structures with other linear array synthesis such as the excitation method and the phase-position synthesis method on the basis of the approximated Pareto Fronts (PFs) yielded by MOEA/D-DE and the best compromise solutions determined from the Pareto optimal set with a fuzzy membership-function based method. The final results obtained with MOEA/D-DE were also compared with the results achieved by three state-of-the-art single objective optimization algorithms. Our simulation studies on three significant instantiations of the design problem reflect the superiority of the MOEA-based design of time-modulated linear arrays.
Citation
Siddharth Pal, Swagatam Das, and Aniruddha Basak, "Design of Time-Modulated Linear Arrays with a Multi-Objective Optimization Approach," Progress In Electromagnetics Research B, Vol. 23, 83-107, 2010.
doi:10.2528/PIERB10052401
References

1. Godara, L. C., Handbook of Antennas in Wireless Communications, CRC, 2002.

2. Kummer, W. H., A. T. Villeneuve, T. S. Fong, and F. G. Terrio, "Ultra-low sidelobes from time-modulated arrays," IEEE Trans. Antennas Propag., Vol. 11, No. 6, 633-639, Nov. 1963.
doi:10.1109/TAP.1963.1138102

3. Schrank, H. E., "Low sidelobe phased array antennas," IEEE Antennas Propagat. Soc. Newslett., Vol. 25, No. 2, 4-9, Apr. 1983.

4. Yang, S., Y. B. Gan, and A. Qing, "Sideband suppression in time-modulated linear arrays by the differential evolution algorithm," IEEE Antennas and Wireless Propagation Letters, Vol. 1, 2002.

5. Bickmore, R. W., "Time versus space in antenna theory," Microwave Scanning Antennas, Vol. 3, R. C. Hansen (ed.), Academic, New York, 1966.

6. Rahmat-Samii, Y. and E. Michielssen, Electromagnetic Optimization by Genetic Algorithms, Wiley, 1999.

7. Yang, S., Y. Chen, and Z. Nie, "Multiple patterns from time-modulated linear antenna arrays," Electromagnetics, Vol. 28, 562-571, 2008.
doi:10.1080/02726340802428671

8. Yang, S. and Z. Nie, "Millimeter-wave low sidelobe time modulated linear arrays with uniform amplitude excitations," Int. J. Infrared Milli. Waves, Vol. 28, 531-540, 2007.
doi:10.1007/s10762-007-9244-6

9. Li, G., S. Yang, Z. Zhao, and Z. Nie, "A study of AM And FM signal reception of time modulated linear antenna arrays," Progress In Electromagnetics Research Letters, Vol. 7, 171-181, 2009.
doi:10.2528/PIERL09030801

10. Yang, S., Y. B. Gan, A. Qing, and P. K. Tan, "Design of a uniform amplitude time modulated linear array with optimized time sequences," IEEE Trans. Antennas Propagat., Vol. 53, No. 7, 2337-2339, Jul. 2005.
doi:10.1109/TAP.2005.850765

11. Yang, S., Y. B. Gan, and P. K. Tan, "A new technique for power pattern synthesis in time modulated linear arrays," IEEE Antennas and Wireless Propagation Letters, Vol. 2, 285-287, Dec. 2003.
doi:10.1109/LAWP.2003.821556

12. Yang, S., Y. B. Gan, and P. K. Tan, "Comparative study of low sidelobe time modulated linear arrays with different time schemes," Journal of Electromagnetic Waves and Applications, Vol. 18, No. 11, 1443-1458, Nov. 2004.
doi:10.1163/1569393042954910

13. Yang, S., Y. B. Gan, and P. K. Tan, "Linear antenna arrays with bidirectional phase center motion," IEEE Trans. Antennas Propagat., Vol. 53, No. 5, 1829-1835, May 2005.
doi:10.1109/TAP.2005.846754

14. Zhu, X., S. Yang, and Z. Nie, "Full-wave simulation of time modulated linear antenna arrays in frequency domain," IEEE Trans. Antennas Propagat., Vol. 56, No. 5, 1479-1482, May 2008.
doi:10.1109/TAP.2008.922701

15. Yang, S. and Z. Nie, "Mutual coupling compensation in time modulated linear antenna arrays," IEEE Trans. Antennas Propagat., Vol. 53, No. 12, 4182-4185, Dec. 2005.
doi:10.1109/TAP.2005.860000

16. Yang, S. W., Y. K. Chen, and Z. P. Nie, "Simulation of time modulated linear antenna arrays using the FDTD method," Progress In Electromagnetics Research, Vol. 98, 175-190, 2009.
doi:10.2528/PIER09092507

17. Li, H. and Q. Zhang, "Multiobjective optimization problems with complicated Pareto Sets, MOEA/D and NSGA-II," IEEE Trans. on Evolutionary Computation, Vol. 12, No. 2, 284-302, 2009.
doi:10.1109/TEVC.2008.925798

18. Zhang, Q., W. Liu, and H. Li, "The performance of a new MOEA/D on CEC09 MOP test instances," Proceedings of the Eleventh Conference on Congress on Evolutionary Computation, (Trondheim, Norway, May 18{21, 2009), 203-208, IEEE Press, Piscataway, NJ, 2009.

19. Zhang, Q., A. Zhou, S. Z. Zhao, P. N. Suganthan, W. Liu, and S. Tiwari, Multiobjective optimization test instances for the CEC 2009 special session and competition, Technical Report CES-887, University of Essex and Nanyang Technological University, 2008.

20. Abido, M. A., "A novel multiobjective evolutionary algorithm for environmental/economic power dispatch," Electric Power Systems Research, Vol. 65, 71-81, Elsevier, 2003.

21. Panduro, M. A., D. H. Covarrubias, and A. L. Mendez, "Design of phased antenna arrays using evolutionary optimization techniques," Advances in Evolutionary Algorithms, 361-376, W. Kosiński (ed.), I-Tech Education and Publishing, Vienna, Austria, Nov. 2008.

22. Boeringer, D. W. and D. H.Werner, "Particle swarm optimization versus genetic algorithms for phased array synthesis," IEEE Trans. Antennas Propagat., Vol. 52, No. 3, 771-779, Mar. 2004.
doi:10.1109/TAP.2004.825102

23. Kurup, D. G., M. Himdi, and A. Rydberg, "Synthesis of uniform amplitude unequally spaced antenna arrays using the differential evolution algorithm," IEEE Trans. Antennas Propagat., Vol. 51, No. 9, 2210-2217, Sep. 2003.
doi:10.1109/TAP.2003.816361

24. Price, K., R. Storn, and J. Lampinen, Differential Evolution --- A Practical Approach to Global Optimization, Springer, 2005.

25. Kennedy, J., R. C. Eberhart, and Y. Shi, Swarm Intelligence, Morgan Kaufmann, 2001.

26. Jin, N. and Y. Rahmat-Samii, "Advances in particle swarm optimization for antenna designs: Real-number, binary, single-objective and multiobjective implementations," IEEE Trans. Antennas Propagat., Vol. 55, 556-567, 2007.
doi:10.1109/TAP.2007.891552

27. Das, I. and J. Dennis, "Normal-boundary intersection: A new method for generating pareto optimal points in multicriteria optimization problems," SIAM Journal on Optimization, Vol. 8, No. 3, 631-657, 1998.
doi:10.1137/S1052623496307510

28. Deb, K., A. Pratap, S. Agarwal, and T. Meyarivan, "A fast and elitist multiobjective genetic algorithm: NSGA-II," IEEE Transactions on Evolutionary Computation, Vol. 6, No. 2, 2002.
doi:10.1109/4235.996017

29. Knowles, J. D. and D. W. Corne, "Approximating the non-dominated front using the Pareto archived evolution strategy," Evolutionary Computation, Vol. 8, No. 2, 149-172, 2000.
doi:10.1162/106365600568167

30. Knowles, J. D. and D. Corne, "The Pareto archived evolution strategy: A new baseline algorithm for pareto multiobjective optimisation," Proceedings of the 1999 IEEE Congress on Evolutionary Computation, IEEE Neural Networks Council, 1999.

31. Zitzler, E., M. Laumanns, and L. Thiele, "SPEA2: Improving the strength Pareto evolutionary algorithm for multiobjective optimization," Evolutionary Methods for Design, Optimisation and Control with Application to Industrial Problems (EUROGEN 2001), 95-100, K. C. Giannakoglou et al. (eds.), International Center for Numerical Methods in Engineering, CIMNE, 2002.

32. Xue, F., A. C. Sanderson, and R. J. Graves, "Pareto-based multi-objective differential evolution," Proceedings of the 2003 Congress on Evolutionary Computation (CEC'2003), Vol. 2, 862-869, IEEE Press, Canberra, Australia, 2003.

33. Knowles, J., L. Thiele, and E. Zitzler, "A tutorial on the performance assessment of stochastic multiobjective optimizers," Computer Engineering and Networks Laboratory, ETH Zurich, Switzerland, Feb. 2006.

34. Yang, S., Y. B. Gan, and A. Qing, "Antenna-array pattern nulling using a differential evolution algorithm," International Journal of RF and Microwave Computer-aided Engineering, Vol. 14, No. 1, 57-63, Jan. 2004.
doi:10.1002/mmce.10118

35. Coello Coello, C. A., G. B. Lamont, and D. A. van Veldhuizen, Evolutionary Algorithms for Solving Multi-objective Problems, Springer, 2007.

36. Deb, K., Multi-objective Optimization using Evolutionary Algorithms, John Wiley & Sons, 2001.

37. Zhang, Q. and H. Li, "MOEA/D: A multi-objective evolutionary algorithm based on decomposition," IEEE Trans. on Evolutionary Computation, Vol. 11, No. 6, 712-731, 2007.
doi:10.1109/TEVC.2007.892759

38. Miettinen, K., Nonlinear Multiobjective Optimization, Kuluwer Academic Publishers, 1999.

39. Das, S., A. Abraham, U. K. Chakraborty, and A. Konar, "Differential evolution using a neighborhood based mutation operator," IEEE Transactions on Evolutionary Computation, Vol. 13, No. 3, 526-553, Jun. 2009.
doi:10.1109/TEVC.2008.2009457

40. Liang, J. J., A. K. Qin, P. N. Suganthan, and S. Baskar, "Comprehensive learning particle swarm optimizer for global optimization of multimodal functions," IEEE Transactions on Evolutionary Computation, Vol. 10, No. 3, 281-295, Jun. 2006.
doi:10.1109/TEVC.2005.857610

41. Massa, A., M. Pastorino, and A. Randazzo, "Optimization of the directivity of a monopulse antenna with a subarray weighting by a hybrid differential evolution method," IEEE Antennas and Wireless Propagation Letters, Vol. 5, 155-158, 2006.
doi:10.1109/LAWP.2006.872435

42. Dib, N. I., S. K. Goudos, and H. Muhsen, "Application of Taguchi's optimization method and self-adaptive differential evolution to the synthesis of linear antenna arrays," Progress In Electromagnetics Research, Vol. 102, 159-180, 2010.
doi:10.2528/PIER09122306

43. Pal, S., B. Qu, S. Das, and P. N. Suganthan, "Linear antenna array synthesis with constrained multi-objective differential evolution," Progress In Electromagnetics Research B, Vol. 21, 87-111, 2010.

44. Wu, H., J. Geng, R. Jin, J. Qiu, W. Liu, J. Chen, and S. Liu, "An improved comprehensive learning particle swarm optimization and its application to the semiautomatic design of antennas," IEEE Trans. Antennas Propagat., Vol. 57, No. 9, 3018-3028, Oct. 2009.

45. Panduroa, M. A., D. H. Covarrubiasa, C. A. Brizuelaa, and F. R. Maranteb, "A multi-objective approach in the linear antenna array design," Int. J. Electron. Commun. (AEÜ), Vol. 59, 205-212, 2005.
doi:10.1016/j.aeue.2004.11.017