1. Meaney, P. M., et al. "Nonactive antenna compensation for fixed-array microwave imaging: Part II --- Imaging results," IEEE Transactions on Medical Imaging, Vol. 18, No. 6, 508-518, 1999.
doi:10.1109/42.781016
2. Meaney, P. M., et al. "A clinical prototype for active microwave imaging of the breast," IEEE Transactions on Microwave Theory and Techniques, Vol. 48, No. 11, 1841-1853, 2000.
doi:10.1109/22.883861
3. Meaney, P. M., et al. "Initial clinical experience with microwave breast imaging in women with normal mammography," Academic Radiology, Vol. 14, No. 2, 207-218, 2007.
doi:10.1016/j.acra.2006.10.016
4. Bulyshev, A. E., et al. "Computational modeling of three-dimensional microwave tomography of breast cancer," IEEE Transactions on Biomedical Engineering, Vol. 48, No. 9, 1053-1056, 2001.
doi:10.1109/10.942596
5. Souvorov, A. E., et al. "Two-dimensional computer analysis of a microwave flat antenna array for breast cancer tomography," IEEE Transactions on Microwave Theory and Techniques, Vol. 48, No. 8, 1413-1415, 2000.
doi:10.1109/22.859490
6. Liu, Q. H., et al. "Active microwave imaging I --- 2-D forward and inverse scattering methods," IEEE Transactions on Microwave Theory and Techniques, Vol. 50, No. 1, 123-133, 2002.
doi:10.1109/22.981256
7. Kosmas, P. and C. M. Rappaport, "Time reversal with the FDTD method for microwave breast cancer detection," IEEE Transactions on Microwave Theory and Techniques, Vol. 53, No. 7, 2317-2323, 2005.
doi:10.1109/TMTT.2005.850444
8. Kosmas, P. and C. M. Rappaport, "FDTD-based time reversal for microwave breast cancer detection --- Localization in three dimensions," IEEE Transactions on Microwave Theory and Techniques, Vol. 54, No. 4, 1921-1927, 2006.
doi:10.1109/TMTT.2006.871994
9. Kosmas, P. and C. M. Rappaport, "A matched-filter FDTD-based time reversal approach for microwave breast cancer detection," IEEE Transactions on Antennas and Propagation, Vol. 54, No. 4, 1257-1264, 2006.
doi:10.1109/TAP.2006.872670
10. Joines, W. T., et al. "The measured electrical properties of normal and malignant human tissues from 50 to 900 MHz," Medical Physics, Vol. 21, No. 4, 1994.
11. Surowiec, A. J., et al. "Dielectric properties of breast carcinoma and the surrounding tissues," IEEE Transactions on Biomedical Engineering, Vol. 35, No. 4, 257-263, 1988.
doi:10.1109/10.1374
12. Hagness, S. C., A. Taflove, and J. E. Bridges, "Two dimensional FDTD analysis of a pulsed microwave confocal system for breast cancer detection: Fixed-focus and antenna-array sensors," IEEE Transactions on Biomedical Engineering, Vol. 45, 1470-1479, 1998.
doi:10.1109/10.730440
13. O'Halloran, M., M. Glavin, and E. Jones, "Channel-ranked beamformer for the early detection of breast cancer," Progress In Electromagnetics Research, Vol. 103, 153-168, 2010.
doi:10.2528/PIER10030902
14. O'Halloran, M., R. C. Conceicao, D. Byrne, M. Glavin, and E. Jones, "FDTD modeling of the breast: A review," Progress In Electromagnetics Research B, Vol. 18, 1-24, 2009.
doi:10.2528/PIERB09080505
15. Li, X. and S. C. Hagness, "A confocal microwave imaging algorithm for breast cancer detection," IEEE Microwave and Wireless Components Letters, Vol. 11, No. 3, 130-132, 2001.
doi:10.1109/7260.915627
16. Li, X., et al. "An overview of ultra-wideband microwave imaging via space-time beamforming for early-stage breast-cancer detection," IEEE Antennas and Propagation Magazine, Vol. 47, No. 1, 19-34, 2005.
doi:10.1109/MAP.2005.1436217
17. Bond, E. J., et al. "Microwave imaging via space-time beamforming for early detection of breast cancer," IEEE Transactions on Antennas and Propogation, Vol. 51, No. 8, 1690-1705, 2003.
doi:10.1109/TAP.2003.815446
18. O'Halloran, M., M. Glavin, and E. Jones, "Quasi-multistatic MIST beamforming for the early detection of breast cancer," IEEE Transactions on Biomedical Engineering, Vol. 57, No. 4, 830-840, 2009.
doi:10.1109/TBME.2009.2016392
19. Lim, H. B., et al. "Confocal microwave imaging for breast cancer detection: Delay-multiply-and-sum image reconstruction algorithm," IEEE Transactions on Biomedical Engineering, Vol. 55, No. 6, 1697-1704, 2008.
doi:10.1109/TBME.2008.919716
20. O'Halloran, M., M. Glavin, and E. Jones, "Effects of fibroglan-dular tissue distribution on data-independent beamforming algo-rithms," Progress In Electromagnetics Research, Vol. 97, 141-158, 2009.
doi:10.2528/PIER09081701
21. Conceicao, R. C., M. O'Halloran, M. Glavin, and E. Jones, "Comparison of planar and circular antenna configurations for breast cancer detection using microwave imaging," Progress In Electromagnetics Research, Vol. 99, 1-19, 2009.
doi:10.2528/PIER09100204
22. Fear, E. C., et al. "Confocal microwave imaging for breast cancer detection: Localization of tumors in three dimensions," IEEE Transactions on Biomedical Engineering, Vol. 49, No. 8, 812-822, 2002.
doi:10.1109/TBME.2002.800759
23. Conceicao, R. C., M. O'Halloran, M. Glavin, and E. Jones, "Antenna configurations for Ultra Wide Band radar detection of breast cancer," Proceedings of the SPIE, Vol. 7169, San Jose California, 2009.
24. Klemm, M., et al. "Breast cancer detection using symmetrical antenna array," Antennas and Propagation, 2007. EuCAP 2007 The Second European Conference, Edinburgh, UK, 2007.
25. Craddock, I. J., et al. "Development and application of a UWB radar system for breast imaging," 2008 Loughborough Antennas & Propagation Conference, 2008.
26. Lazebnik, M., et al. "A large-scale study of the ultrawideband microwave dielectric properties of normal breast tissue obtained from reduction surgeries," Physics in Medicine and Biology, Vol. 52, 2637-2656, 2007.
doi:10.1088/0031-9155/52/10/001
27. Lazebnik, M., et al. "A large-scale study of the ultrawideband microwave dielectric properties of normal, benign and malignant breast tissues obtained from cancer surgeries," Physics in Medicine and Biology, Vol. 52, 6093-6115, 2007.
doi:10.1088/0031-9155/52/20/002
28. Chen, Y., et al. "Effect of lesion morphology on microwave signature in ultra-wideband breast imaging: A preliminary two-dimensional investigation," 2007 IEEE Antennas and Propagation Society International Symposium, 2007.
29. Chen, Y., et al. "Effect of lesion morphology on microwave signa-ture in 2-D ultra-wideband breast imaging," IEEE Transactions on Biomedical Engineering, Vol. 55, No. 8, 2011-2021, 2008.
doi:10.1109/TBME.2008.921136
30. Chen, Y., I. J. Craddock, and P. Kosmas, "Feasibility study of lesion classification via contrast-agent-aided UWB breast of lesion classification via contrast-agent-aided UWB breast imaging," IEEE Transactions on Biomedical Engineering, Vol. 57, No. 5, 1003-1007, 2010.
doi:10.1109/TBME.2009.2038788
31. Davis, S. K., et al. "Breast tumor characterization based on ultrawideband microwave backscatter," IEEE Transactions on Biomedical Engineering, Vol. 55, No. 1, 237-246, 2008.
doi:10.1109/TBME.2007.900564
32. Muinonen, K., "Introducing the Gaussian shape hypothesis for Asteroids and Comets," Astronomy and Astrophysics, Vol. 332, 1087-1098, 1998.
33. Everitt, B. S. and G. Dunn, Applied Multivariate Data Analysis, 2nd edition, Arnold Publishers, 2001.
34. Seber, G. A. F., Multivariate Observations, John Wiley & Sons, 1984.
35. Krzanowski, W. J., Principles of Multivariate Analysis: A User's Perspective, Oxford University Press, 1988.
36. Raykov, T. and G. A. Marcoulides, "An introduction to applied multivariate analysis,", Routledge Taylor & Francis Group, New York, 2008.
37. Conceicao, R. C., et al. "Classification of suspicious regions within ultrawideband radar images of the breast," 16th IET Irish Signals and Systems Conference, ISSC 2008, Instn. Engg. & Tech., Galway, Ireland, UK, 2008.
38. Rangayyan, R. M., et al. "Measures of acutance and shape for classification of breast tumors," IEEE Transactions on Medical Imaging, Vol. 16, No. 6, 799-810, 1997.
doi:10.1109/42.650876
39. Guliato, D., et al. "Polygonal modeling of contours of breast tumors with the preservation of spicules," IEEE Transactions on Biomedical Engineering, Vol. 55, No. 1, 14-20, 2008.
doi:10.1109/TBME.2007.899310
40. Nguyen, T. M. and R. M. Rangayyan, "Shape analysis of breast masses in mammograms via the fractial dimension," Engineering in Medicine and Biology 27th Annual Conference, IEEE, Shangai, China, 2005.
41. Muinonen, K., "Chapter 11: Light scattering by stochastically shaped particles," Light Scattering by Nonspherical Particles: Theory, Measurements, and Applications, M. I. Mishchenko, J. W. Hovenier, and L. D. Travis, Editors, Academic Press, 2000.
42. Wold, H., "Estimation of principal components and related models by iterative least squares," Multivariate Analysis, K. R. Krishnaiah, Editor, 391-420, Academic Press, New York, 1996.
43. Shlens, J., "A tutorial on principal component analysis,", Mar. 25, 2003. Available: http://www.cs.princeton.edu/picasso/mats/PCA-Tutorial-Intuition jp.pdf..
44. Bartholomew, D. J., et al. "The analysis and interpretation of multivariate data for social scientists," Texts in Statistical Science, Chapman & Hall/CRC, USA, 2002.
45. Hsu, C.-W., C.-C. Chang, and C.-J. Lin, "A practical guide to support vector classification,", Apr. 3, 2010. Available: www.csie.ntu.edu.tw/»cjlin/papers/guide/guide.pdf..
46. Sullivan, D. M., Electromagnetic Simulation Using the FDTD, 1st Edition, IEEE Press Series on RF and Microwave Technology, R. D. Pollard and R. Booton, Editors, Wiley-IEEE Press, 2000.
47. Taflove, A. and S. C. Hagness, Computational Electrodynamics: The Finite-difference Time-domain Method, 2nd edition, Artech House, 2000.