Vol. 15
Latest Volume
All Volumes
PIERL 123 [2025] PIERL 122 [2024] PIERL 121 [2024] PIERL 120 [2024] PIERL 119 [2024] PIERL 118 [2024] PIERL 117 [2024] PIERL 116 [2024] PIERL 115 [2024] PIERL 114 [2023] PIERL 113 [2023] PIERL 112 [2023] PIERL 111 [2023] PIERL 110 [2023] PIERL 109 [2023] PIERL 108 [2023] PIERL 107 [2022] PIERL 106 [2022] PIERL 105 [2022] PIERL 104 [2022] PIERL 103 [2022] PIERL 102 [2022] PIERL 101 [2021] PIERL 100 [2021] PIERL 99 [2021] PIERL 98 [2021] PIERL 97 [2021] PIERL 96 [2021] PIERL 95 [2021] PIERL 94 [2020] PIERL 93 [2020] PIERL 92 [2020] PIERL 91 [2020] PIERL 90 [2020] PIERL 89 [2020] PIERL 88 [2020] PIERL 87 [2019] PIERL 86 [2019] PIERL 85 [2019] PIERL 84 [2019] PIERL 83 [2019] PIERL 82 [2019] PIERL 81 [2019] PIERL 80 [2018] PIERL 79 [2018] PIERL 78 [2018] PIERL 77 [2018] PIERL 76 [2018] PIERL 75 [2018] PIERL 74 [2018] PIERL 73 [2018] PIERL 72 [2018] PIERL 71 [2017] PIERL 70 [2017] PIERL 69 [2017] PIERL 68 [2017] PIERL 67 [2017] PIERL 66 [2017] PIERL 65 [2017] PIERL 64 [2016] PIERL 63 [2016] PIERL 62 [2016] PIERL 61 [2016] PIERL 60 [2016] PIERL 59 [2016] PIERL 58 [2016] PIERL 57 [2015] PIERL 56 [2015] PIERL 55 [2015] PIERL 54 [2015] PIERL 53 [2015] PIERL 52 [2015] PIERL 51 [2015] PIERL 50 [2014] PIERL 49 [2014] PIERL 48 [2014] PIERL 47 [2014] PIERL 46 [2014] PIERL 45 [2014] PIERL 44 [2014] PIERL 43 [2013] PIERL 42 [2013] PIERL 41 [2013] PIERL 40 [2013] PIERL 39 [2013] PIERL 38 [2013] PIERL 37 [2013] PIERL 36 [2013] PIERL 35 [2012] PIERL 34 [2012] PIERL 33 [2012] PIERL 32 [2012] PIERL 31 [2012] PIERL 30 [2012] PIERL 29 [2012] PIERL 28 [2012] PIERL 27 [2011] PIERL 26 [2011] PIERL 25 [2011] PIERL 24 [2011] PIERL 23 [2011] PIERL 22 [2011] PIERL 21 [2011] PIERL 20 [2011] PIERL 19 [2010] PIERL 18 [2010] PIERL 17 [2010] PIERL 16 [2010] PIERL 15 [2010] PIERL 14 [2010] PIERL 13 [2010] PIERL 12 [2009] PIERL 11 [2009] PIERL 10 [2009] PIERL 9 [2009] PIERL 8 [2009] PIERL 7 [2009] PIERL 6 [2009] PIERL 5 [2008] PIERL 4 [2008] PIERL 3 [2008] PIERL 2 [2008] PIERL 1 [2008]
2010-06-16
LOD-Like Method That Characterizes the Analytical Solution
By
Progress In Electromagnetics Research Letters, Vol. 15, 127-136, 2010
Abstract
A LOD-like method that characterizes the analytical solution is proposed to study the one-dimensional (1-D) chiral media. Through theoretical analysis and numerical simulation, it is found that the proposed scheme is unconditionally stable. This scheme employs the new mesh-dividing method for bi-isotropic media, in which the two sections on the right side of the rearranged curl equations are regarded as two directions and the LOD-like algorithm is used to deal with the equivalent two-dimensional (2-D) problem. In the first substep, the conventional LOD method is used in computation, while for the second substep, the analytical solution is employed instead. By simulating the polarization rotation of a mono-frequency linear polarized wave both in a 1-D homogeneous chiral media and through a chiral slab, the scheme is testified to be unconditionally stable.
Citation
De-An Cao, and Qing-Xin Chu, "LOD-Like Method That Characterizes the Analytical Solution," Progress In Electromagnetics Research Letters, Vol. 15, 127-136, 2010.
doi:10.2528/PIERL10050504
References

1. Namiki, T., "A new FDTD algorithm based on alternating-direction implicit method," IEEE Trans. Microwave Theory Tech., Vol. 47, No. 10, 2003-2007, 1999.
doi:10.1109/22.795075

2. Sun, C. and C. W. Trueman, "Unconditionally stable Crank-Nicolson scheme for solving two-dimensional Maxwell's equations," Electron. Lett., Vol. 39, No. 7, 595-597, 2003.
doi:10.1049/el:20030416

3. Shibayama, J., M. Muraki, J.Yamauchi, et al. "Efficient implicit FDTD algorithm based on locally one-dimensional scheme," Electron. Lett., Vol. 41, No. 19, 1046-1047, 2005.
doi:10.1049/el:20052381

4. Grande, A., I. Barba, A. C. L. Cabeceira, et al. "FDTD modeling of transient microwave signals in dispersive and lossy bi-isotropic media," IEEE Trans. Microwave Theory Tech., Vol. 52, No. 3, 773-784, 2004.
doi:10.1109/TMTT.2004.823537

5. Grande, A., I. Barba, A. C. L. Cabeceira, et al. "Two-dimensional extension of a novel FDTD technique for modeling dispersive lossy bi-isotropic media using the auxiliary differential equation method," IEEE Microw. Wireless Compon. Lett., Vol. 15, No. 5, 375-377, 2005.
doi:10.1109/LMWC.2005.847732

6. Ji, F., K. N. Yung Edward, and X. Q. Sheng, "Three-dimensional FDTD analysis of chiral discontinuities in the waveguide," Int. J. Infrared Millimeter Waves, Vol. 23, No. 10, 1521-1528, 2002.
doi:10.1023/A:1020385721043

7. Demir, V., A. Elsherbeni, and E. Arvas, "FDTD formulations for scattering from three dimensional chiral objects," 20th Annual Review of Progress in Applied Computational Electromagnetics, Syracuse, NY, 2004.

8. Akyurtlu, A., "Modeling of bi-anisotropic media using the finite-difference time-domain method,", Ph.D. dissertation, Dept. of Electrical Engineering, Pennsylvania State Univ., University Park, 2001.

9. Akyurtlu, A. and D. H. Werner, "BI-FDTD: A novel finite-difference time-domain formulation for modeling wave propagation in bi-isotropic media ," IEEE Trans. Antennas Propag., Vol. 52, No. 2, 416-425, 2004.
doi:10.1109/TAP.2004.823956

10. Alcantara, L. D. S., "An unconditionally stable FDTD method for electromagnetic wave propagation analysis in bi-isotropic media," IEEE MTT-S, 661-664, Brasilia, Brazil, 2006.

11. Lindell, I. V., A. H. Sihvola, S. A. Tretyakov, and A. J. Viitanen, Electromagnetic Waves in Chiral and Bi-isotropic Media, Artech House, 1994.

12. Sihvola, A. H., "Electromagnetic modeling of bi-isotropic media," Progress In Electromagnetics Research, Vol. 09, 45-86, 1994.

13. Kuzu, L., V. Demir, A. Z. Elsherbeni, and E. Arvas, "Electromagnetic scattering from arbitrarily shaped chiral objects using the finite difference frequency domain method," Progress In Electromagnetics Research, Vol. 67, 1-24, 2007.
doi:10.2528/PIER06083104

14. Shi, Y. and C. H. Chan, "Solution to electromagnetic scattering by bi-isotropic media using multilevel Green's function interpolation method," Progress In Electromagnetics Research, Vol. 97, 259-274, 2009.
doi:10.2528/PIER09092001

15. Topa, A. L., C. R. Paiva, and A. M. Barbosa, "Electromagnetic wave propagation in chiral H-guides," Progress In Electromagnetics Research, Vol. 103, 285-303, 2010.
doi:10.2528/PIER10032106

16. Gomez, A., A. Lakhtakia, J. Margineda, et al. "Full-wave hybrid technique for 3D isotropic-chiral-material discontinuities in rectangular waveguides: Theory and experiment," IEEE Trans. Microwave Theory Tech., Vol. 56, No. 12, 2815-2825, 2008.
doi:10.1109/TMTT.2008.2007190

17. Stefanski, T. and T. D. Drysdale, "Improved implementation of the Mur first-order absorbing boundary condition in the ADIFDTD method," Microwave Opt. Technol., Vol. 50, No. 7, 1757-1761, 2008.
doi:10.1002/mop.23508