1. Namiki, T., "A new FDTD algorithm based on alternating-direction implicit method," IEEE Trans. Microwave Theory Tech., Vol. 47, No. 10, 2003-2007, 1999.
doi:10.1109/22.795075
2. Sun, C. and C. W. Trueman, "Unconditionally stable Crank-Nicolson scheme for solving two-dimensional Maxwell's equations," Electron. Lett., Vol. 39, No. 7, 595-597, 2003.
doi:10.1049/el:20030416
3. Shibayama, J., M. Muraki, J.Yamauchi, et al. "Efficient implicit FDTD algorithm based on locally one-dimensional scheme," Electron. Lett., Vol. 41, No. 19, 1046-1047, 2005.
doi:10.1049/el:20052381
4. Grande, A., I. Barba, A. C. L. Cabeceira, et al. "FDTD modeling of transient microwave signals in dispersive and lossy bi-isotropic media," IEEE Trans. Microwave Theory Tech., Vol. 52, No. 3, 773-784, 2004.
doi:10.1109/TMTT.2004.823537
5. Grande, A., I. Barba, A. C. L. Cabeceira, et al. "Two-dimensional extension of a novel FDTD technique for modeling dispersive lossy bi-isotropic media using the auxiliary differential equation method," IEEE Microw. Wireless Compon. Lett., Vol. 15, No. 5, 375-377, 2005.
doi:10.1109/LMWC.2005.847732
6. Ji, F., K. N. Yung Edward, and X. Q. Sheng, "Three-dimensional FDTD analysis of chiral discontinuities in the waveguide," Int. J. Infrared Millimeter Waves, Vol. 23, No. 10, 1521-1528, 2002.
doi:10.1023/A:1020385721043
7. Demir, V., A. Elsherbeni, and E. Arvas, "FDTD formulations for scattering from three dimensional chiral objects," 20th Annual Review of Progress in Applied Computational Electromagnetics, Syracuse, NY, 2004.
8. Akyurtlu, A., "Modeling of bi-anisotropic media using the finite-difference time-domain method,", Ph.D. dissertation, Dept. of Electrical Engineering, Pennsylvania State Univ., University Park, 2001.
9. Akyurtlu, A. and D. H. Werner, "BI-FDTD: A novel finite-difference time-domain formulation for modeling wave propagation in bi-isotropic media ," IEEE Trans. Antennas Propag., Vol. 52, No. 2, 416-425, 2004.
doi:10.1109/TAP.2004.823956
10. Alcantara, L. D. S., "An unconditionally stable FDTD method for electromagnetic wave propagation analysis in bi-isotropic media," IEEE MTT-S, 661-664, Brasilia, Brazil, 2006.
11. Lindell, I. V., A. H. Sihvola, S. A. Tretyakov, and A. J. Viitanen, Electromagnetic Waves in Chiral and Bi-isotropic Media, Artech House, 1994.
12. Sihvola, A. H., "Electromagnetic modeling of bi-isotropic media," Progress In Electromagnetics Research, Vol. 09, 45-86, 1994.
13. Kuzu, L., V. Demir, A. Z. Elsherbeni, and E. Arvas, "Electromagnetic scattering from arbitrarily shaped chiral objects using the finite difference frequency domain method," Progress In Electromagnetics Research, Vol. 67, 1-24, 2007.
doi:10.2528/PIER06083104
14. Shi, Y. and C. H. Chan, "Solution to electromagnetic scattering by bi-isotropic media using multilevel Green's function interpolation method," Progress In Electromagnetics Research, Vol. 97, 259-274, 2009.
doi:10.2528/PIER09092001
15. Topa, A. L., C. R. Paiva, and A. M. Barbosa, "Electromagnetic wave propagation in chiral H-guides," Progress In Electromagnetics Research, Vol. 103, 285-303, 2010.
doi:10.2528/PIER10032106
16. Gomez, A., A. Lakhtakia, J. Margineda, et al. "Full-wave hybrid technique for 3D isotropic-chiral-material discontinuities in rectangular waveguides: Theory and experiment," IEEE Trans. Microwave Theory Tech., Vol. 56, No. 12, 2815-2825, 2008.
doi:10.1109/TMTT.2008.2007190
17. Stefanski, T. and T. D. Drysdale, "Improved implementation of the Mur first-order absorbing boundary condition in the ADIFDTD method," Microwave Opt. Technol., Vol. 50, No. 7, 1757-1761, 2008.
doi:10.1002/mop.23508