Vol. 26
Latest Volume
All Volumes
PIERB 109 [2024] PIERB 108 [2024] PIERB 107 [2024] PIERB 106 [2024] PIERB 105 [2024] PIERB 104 [2024] PIERB 103 [2023] PIERB 102 [2023] PIERB 101 [2023] PIERB 100 [2023] PIERB 99 [2023] PIERB 98 [2023] PIERB 97 [2022] PIERB 96 [2022] PIERB 95 [2022] PIERB 94 [2021] PIERB 93 [2021] PIERB 92 [2021] PIERB 91 [2021] PIERB 90 [2021] PIERB 89 [2020] PIERB 88 [2020] PIERB 87 [2020] PIERB 86 [2020] PIERB 85 [2019] PIERB 84 [2019] PIERB 83 [2019] PIERB 82 [2018] PIERB 81 [2018] PIERB 80 [2018] PIERB 79 [2017] PIERB 78 [2017] PIERB 77 [2017] PIERB 76 [2017] PIERB 75 [2017] PIERB 74 [2017] PIERB 73 [2017] PIERB 72 [2017] PIERB 71 [2016] PIERB 70 [2016] PIERB 69 [2016] PIERB 68 [2016] PIERB 67 [2016] PIERB 66 [2016] PIERB 65 [2016] PIERB 64 [2015] PIERB 63 [2015] PIERB 62 [2015] PIERB 61 [2014] PIERB 60 [2014] PIERB 59 [2014] PIERB 58 [2014] PIERB 57 [2014] PIERB 56 [2013] PIERB 55 [2013] PIERB 54 [2013] PIERB 53 [2013] PIERB 52 [2013] PIERB 51 [2013] PIERB 50 [2013] PIERB 49 [2013] PIERB 48 [2013] PIERB 47 [2013] PIERB 46 [2013] PIERB 45 [2012] PIERB 44 [2012] PIERB 43 [2012] PIERB 42 [2012] PIERB 41 [2012] PIERB 40 [2012] PIERB 39 [2012] PIERB 38 [2012] PIERB 37 [2012] PIERB 36 [2012] PIERB 35 [2011] PIERB 34 [2011] PIERB 33 [2011] PIERB 32 [2011] PIERB 31 [2011] PIERB 30 [2011] PIERB 29 [2011] PIERB 28 [2011] PIERB 27 [2011] PIERB 26 [2010] PIERB 25 [2010] PIERB 24 [2010] PIERB 23 [2010] PIERB 22 [2010] PIERB 21 [2010] PIERB 20 [2010] PIERB 19 [2010] PIERB 18 [2009] PIERB 17 [2009] PIERB 16 [2009] PIERB 15 [2009] PIERB 14 [2009] PIERB 13 [2009] PIERB 12 [2009] PIERB 11 [2009] PIERB 10 [2008] PIERB 9 [2008] PIERB 8 [2008] PIERB 7 [2008] PIERB 6 [2008] PIERB 5 [2008] PIERB 4 [2008] PIERB 3 [2008] PIERB 2 [2008] PIERB 1 [2008]
2010-09-26
Local Dispersion of Guiding Modes in Photonic Crystal Waveguide Interfaces and Hetero-Structures
By
Progress In Electromagnetics Research B, Vol. 26, 39-52, 2010
Abstract
Recently, we have introduced a numerical method for calculating local dispersion of arbitrary shaped optical waveguides, which is based on the Finite-Difference Time-domain and filter diagonalization technique. In this paper we present a study of photonic crystal waveguides at interfaces and double hetero-structure waveguides. We have studied the waveguide stretching effect, which is the change in lattice constant of photonic crystals along waveguiding direction. Hybrid modes at photonic crystal heterostructure interfaces are observed, which are the results of superposition of existing modes in adjacent waveguides. The dispersion at the interfaces of a double hetero-structure waveguide tends to the dispersion of outer waveguides. The effective area still holding the dispersion of the middle waveguide is shorter than the geometrical length of the middle waveguide. The results of this study present a clear picture of dispersion at interfaces and the transmission in photonic crystal hetero-structures.
Citation
Babak Dastmalchi, Reza Kheradmand, Abouzar Hamidipour, Abbas Mohtashami, Kurt Hingerl, and Javad Zarbakhsh, "Local Dispersion of Guiding Modes in Photonic Crystal Waveguide Interfaces and Hetero-Structures," Progress In Electromagnetics Research B, Vol. 26, 39-52, 2010.
doi:10.2528/PIERB10050104
References

1. Vuckovic, J., M. Pelton, A. Scherer, and Y. Yamamoto, "Optimization of three-dimensional micropost microcavities for cavity quantum electrodynamics," Phys. Rev. A, Vol. 66, 9, 2002.
doi:10.1103/PhysRevA.66.023808

2. Zarbakhsh, J., A. Mohtashami, and K. Hingerl, "Geometrical freedom for constructing variable size photonic bandgap structures," Opt. Quantum Electron., Vol. 39, 395-405, 2007.
doi:10.1007/s11082-007-9081-9

3. Srinivasan, K. and O. Painter, "Fourier space design of high-Q cavities in standard and compressed hexagonal lattice photonic crystals," Opt. Express, Vol. 11, 579-593, 2003.
doi:10.1364/OE.11.000579

4. Zarbakhsh, J., F. Hagmann, S. F. Mingaleev, K. Busch, and K. Hingerl, "Arbitrary angle waveguiding applications of two-dimensional curvilinear-lattice photonic crystals," Appl. Phys. Lett., Vol. 84, 4687-4689, 2004.
doi:10.1063/1.1760222

5. Noda, S., M. Imada, M. Okano, S. Ogawa, M. Mochizuki, and A. Chutinan, "Semiconductor three-dimensional and two-dimensional photonic crystals and devices," IEEE J. Quantum Electron., Vol. 38, 726-735, 2002.
doi:10.1109/JQE.2002.1017582

6. Vuckovic, J., D. Englund, D. Fattal, E. Waks, and Y. Yamamoto, "Generation and manipulation of nonclassical light using photonic crystals," Physica E, Vol. 32, 466-470, 2006.
doi:10.1016/j.physe.2005.12.135

7. Meade, R. D., A. Devenyi, J. D. Joannopoulos, O. L. Alerhand, D. A. Smith, and K. Kash, "Novel applications of photonic band-gap materials --- low-loss bends and high Q-cavities," J. Appl Phys., Vol. 75, 4753-4755, 1994.
doi:10.1063/1.355934

8. Akahane, Y., T. Asano, H. Takano, B. S. Song, Y. Takana, and S. Noda, "Two-dimensional photonic-crystal-slab channel-drop filter with flat-top response," Opt. Express, Vol. 13, 2512-2530, 2005.
doi:10.1364/OPEX.13.002512

9. Chutinan, A. and S. John, "Diffractionless flow of light in two- and three-dimensional photonic band gap heterostructures: Theory, design rules, and simulations," Phys. Rev. E, Vol. 71, 19, 2005.
doi:10.1103/PhysRevE.71.026605

10. Mohtashami, A., J. Zarbakhsh, and K. Hingerl, "Advanced impedance matching in photonic crystal waveguides," Opt. Quantum Electron., Vol. 39, 387-394, 2007.
doi:10.1007/s11082-007-9080-x

11. Chaloupka, J., J. Zarbakhsh, and K. Hingerl, "Local density of states and modes of circular photonic crystal cavities," Phys. Rev. B, Vol. 72, 5, 2005.
doi:10.1103/PhysRevB.72.085122

12. Song, B. S., S. Noda, T. Asano, and Y. Akahane, "Ultra-high-Q photonic double-heterostructure nanocavity," Nat. Mater., Vol. 4, 207-210, 2005.
doi:10.1038/nmat1320

13. O'Brien, D., M. D. Settle, T. Karle, A. Michaeli, M. Salib, and T. F. Krauss, "Coupled photonic crystal heterostructure nanocavities," Opt. Express, Vol. 15, 1228-1233, 2007.
doi:10.1364/OE.15.001228

14. Istrate, E. and E. H. Sargent, "Photonic crystal heterostructures --- resonant tunneling, waveguides and filters," J. Opt. A --- Pure Appl. Opt., Vol. 4, S242-S246, 2002.
doi:10.1088/1464-4258/4/6/360

15. Song, B. S., T. Asano, and S. Noda, "Physical origin of the small modal volume of ultra-high-Q photonic double-heterostructure nanocavities," New J. Phys., Vol. 8, 12, 2006.
doi:10.1088/1367-2630/8/9/209

16. Song, B. S., S. Noda, and T. Asano, "Photonic devices based on in-plane hetero photonic crystals," Science, Vol. 300, 1537-1537, 2003.
doi:10.1126/science.1083066

17. Kramper, P., M. Agio, C. M. Soukoulis, A. Birner, F. Muller, R. B. Wehrspohn, U. Gosele, and V. Sandoghdar, "Highly directional emission from photonic crystal waveguides of subwavelength width," Phys. Rev. Lett., Vol. 92, 4, 2004.
doi:10.1103/PhysRevLett.92.113903

18. Moreno, E., F. J. Garcia-Vidal, and L. Martin-Moreno, "Enhanced transmission and beaming of light via photonic crystal surface modes," Phys. Rev. B, Vol. 69, 4, 2004.

19. Dastmalchi, A. M., K. Hingerl, and J. Zarbakhsh, "Method of calculating local dispersion in arbitrary photonic crystal waveguides," Opt. Lett., Vol. 32, 2915-2917, 2007.
doi:10.1364/OL.32.002915

20. Mandelshtam, V. A., "FDM: The filter diagonalization method for data processing in NMR experiments," Progress in Nuclear Magnetic Resonance Spectroscopy, Vol. 38, 159-196, Mar. 19, 2001.
doi:10.1016/S0079-6565(00)00032-7

21. Wall, M. R. and D. Neuhauser, "Filter-diagonalization --- A new method for the computation of eigenstates," Abstracts of Papers of the American Chemical Society, Vol. 209, 249, Apr. 2, 1995.

22. Busch, K., G. Von Freymann, S. Linden, S. F. Mingaleev, L. Tkeshelashvili, and M. Wegener, "Periodic nanostructures for photonics," Phys. Rep. --- Rev. Sec. Phys. Lett., Vol. 444, 101-202, 2007.

23. Ramos-Mendieta, F. and P. Halevi, "Surface electromagnetic waves in two-dimensional photonic crystals: Effect of the position of the surface plane," Phys. Rev. B, Vol. 59, 15112-15120, 1999.
doi:10.1103/PhysRevB.59.15112