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Abstract—Recently, we have introduced a numerical method for
calculating local dispersion of arbitrary shaped optical waveguides,
which is based on the Finite-Difference Time-domain and filter
diagonalization technique. In this paper we present a study of
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photonic crystal waveguides at interfaces and double hetero-structure
waveguides. We have studied the waveguide stretching effect, which is
the change in lattice constant of photonic crystals along waveguiding
direction. Hybrid modes at photonic crystal heterostructure interfaces
are observed, which are the results of superposition of existing modes
in adjacent waveguides. The dispersion at the interfaces of a double
hetero-structure waveguide tends to the dispersion of outer waveguides.
The effective area still holding the dispersion of the middle waveguide
is shorter than the geometrical length of the middle waveguide. The
results of this study present a clear picture of dispersion at interfaces
and the transmission in photonic crystal hetero-structures.

1. INTRODUCTION

In the past several years, there have been lots of interest in well-
designed Photonic Crystal (PC) structures [1–4], since they can
control the propagation and localization of light, and have shown
very promising applications as functional photonic devices [5], such
as low-threshold lasers [6, 7], channel drop filters [8], and optical
sensors. Various PC structures and devices designed around the world
are not necessarily embedded in a single crystalline PC structure.
Even having a photonic-integrated circuit in a single crystalline PC
structure is a challenge. There have been PC interfaces reported
with different PC lattices in their vicinity, which are known as PC
heterostructure [12, 13]. PC heterostructures consist of concatenations
of two or more photonic crystals with different band structures, or
guiding frequency range, which can be realized by different refractive
indices, lattice periods or lattice types [14].

Double heterostructure waveguides are very promising, as they
guide the light in certain frequency ranges while confine it in other
ranges. Recently, very high quality factors reported in double
heterostructures [12, 15]. It has been experimentally shown by
Song et al. [12, 16] that high quality factor can be achieved in double
heterostructure cavities. These authors have theoretically described
the effect using Plane Wave Expansion (PWE) technique. They
have described the photon confinement mechanism by analyzing the
imaginary dispersion relations and the mode-gap effect [15]. Since
PWE is assumed as a method for studying dispersion in infinite
periodic structures, a question arises whether PWE is in principle an
appropriate method in studying PC heterostructures? One might even
argue that the PWE is not suitable for local study of dispersion in non
periodic structures.
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The argument for applying PWE for dispersion calculation in
the waveguides is the existence of a short range periodicity, i.e., one
can consider that the structure is locally periodic. The assumption
of local periodicity is very useful and it can be used to study
novel photonic crystal designs including curvilinear and circular PC
waveguides [4, 11]. A heterostructure interface, e.g., an interface of
two adjacent waveguides, can be an extreme case of non-periodicity,
where applying of the PWE is hardly justifiable. The dispersion at a
heterostructure interface might not be similar to either of the adjacent
waveguides. Generally, the guiding modes of one waveguide might
fall into the mode gap of the second waveguide and therefore decay
exponentially. Furthermore there might be localized modes at the
interface, which decay in both waveguides. The interface states can
strongly affect the transmission of light through the structure. It
was found that these states can be used to overcome the diffraction
limit for light emerging from an aperture of the same size as the
wavelength [17, 18].

In this paper, we describe three methods for studying the
dispersion: PWE, Spatial Fourier Transform (SFT), and Filter
Diagonalization Method (FDM) [20, 21]. We show how the results
can be used to study the local dispersion in waveguide interfaces and
heterostructures.

2. NUMERICAL ANALYSIS OF LOCAL DISPERSION

In order to study the dispersion of photonic crystal waveguides, the
PWE method can be applied on a super cell. The super cell is usually a
single periodicity cut of the waveguide along the propagation direction
and includes several periods in perpendicular direction. The size of
super cell along the perpendicular direction should be large enough
in order to guarantee that the coupling between artificial neighboring
super cells is negligible. Figure 1(a) shows an example of a W1 photonic
crystal waveguide in hexagonal array of 2DPCs, consisting of the air
holes in silicon background with refractive index of 3.4, and radius of
holes is r = 0.297a. The indicated arrows show the primitive vectors
and the parallelogram shows the super cell for PWE calculations.
Figure 1(b) shows the dispersion relation for the guiding modes, and
the dark color shows areas out of the band gap. We also indicate two
points on the guiding mode, with different frequencies ω1 and ω2, with
corresponding wave vectors k1 and k2 for further discussions.

The dispersion relation ω(k) holds information about the
periodicity of the guiding modes along the propagation direction,
and it can be compared with the mode profiles calculated by finite
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(a) (b)

Figure 1. (a) Top view of a W1PC waveguide. The indicated arrows
show the primitive vectors and the parallelogram shows the super cell
for PWE calculations. (b) Dispersion relation for the guiding modes
calculated for H-polarization. The dark areas indicate the regions out
of the band gap. Two indicated points on the guiding mode will be
discussed further.

difference time domain (FDTD). Figure 2 shows the modes profile of
two frequencies on the guiding mode, indicated in Figure 1(b), and
the corresponding cross sections along the propagation direction. The
periodicity of these modes along the propagation direction is known
as the spatial wavelength Λ = 2π/k, where k is the wave vector.
Alternatively, one can extract the k vectors of an arbitrary waveguide
by analyzing the mode profile. In the SFT method, one takes a
snapshot of the field along the propagation direction, usually known
as window, and performs a signal processing analysis on it. It includes
the multiplication of the sampling values with a window function and
Fourier transform of it. The results are the spatial frequencies, which
describe the number of peaks per unit length along the propagation
direction.

One can repeat the procedure over a desired frequency range
to extract the dispersion relation of the waveguiding mode. In our
previous work [19], we have shown that the SFT results are well
comparable with PWE, especially for large window sizes. It is also
possible to use windowing techniques to enhance the accuracy of the
results. An Alternative approach is to use a filtering technique, as
it is well-known in digital signal processing. The filtering technique
is one of the common processing approaches which is used in both
time and space domain for enhancement of signals. We have
considered the Filter diagonalization method and have proven that
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Figure 2. Mode profiles of two indicated points in Figure 1(b)
with corresponding frequencies of (a) ω1 = 0.27µm−1 and (b) ω2 =
0.225µm−1. For better comparison, the cross section along the
propagation direction is plotted for each mode profile.

the method is very efficient for small window sizes and can be
applied to arbitrary waveguides, e.g., curvilinear photonic crystal
waveguides [19]. The important assumption in FDM technique is
that the field can be written as a sum of exponentially decaying terms
E(x) =

∑
n an exp(−iknx), where amplitudes, aj , and complex spatial

frequencies, k, of electromagnetic field over a short spatial window
sizes are unknown. The negative imaginary part of k characterizes the
decay rate of the signal.

For both SFT and FDM methods, the FDTD calculation is the
most time-consuming part. For very good result with high spatial
resolution, the FDTD simulations need to be carried out for tens
of hours. An alternative method is to use the Multiple Multipole
Expansion (MME) to calculate the stationary field profile and the local
density of states [11, 20], however this is not the focus of this paper.

3. EFFECT OF STRETCHING ON BAND GAP AND
THE WAVEGUIDING MODES

The structural properties of Photonic heterostructures are determined
by the lattice parameter mismatch, which we refer as stretching
effect. In the heterostructure waveguides designing it is known as
a degree of freedom for the optimizing procedures. Song et al.
employed the stretching of the PC waveguides in order to design a
PC double heterostructure and described the mechanism based on the
PWE. They have connected a triangular lattice PC to a deformed
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Figure 3. (a) Top view of a PC waveguide stretched along x-direction.
The dashed circles represent the un-stretched PC (s = 1) and solid
circles indicate a PC structure with a stretching factor of s = 1.2.
(b) Mode gap (dark area) and mode guiding (light area) regions as a
function of stretching factor.

triangular-lattice structure, which has a larger lattice constant along
the propagation direction, while retaining the lattice constant in
perpendicular direction, in order to satisfy lattice matching conditions.
Here we study the effect of stretching on band gap more in details, by
continuously varying the stretching factor.

The stretching factor can be defined as change of horizontal
distance between the lenses, while keeping the vertical distance
constant. Figure 3(a) shows a W1-PC waveguide stretched by a factor
of s = 1.2. Assuming that the stretched waveguide is infinite, one
can still calculate the band gap range and the guiding mode, as it is
shown in Figure 3(b). This arrangement consists of air holes in silicon
background with refractive index of 3.4, and the radius r = 0.297a,
where a is the period. The stretching factor increase the lateral
distance between neighboring rods along x direction from 0 to 10
percent.

Figure 3(b) shows the reduction of guiding region with stretching,
whereas the mode gap range stays unchanged. In fact due to the
stretching the modes with higher frequency, which are out of the band
gap range shift down toward the band gap, and reduce the band gap
range. The mode gap range, which is shown in dark orange, is the
region in which propagation is inhibited.

In the rest of this study we will use the same lattice contents
which are use by Song et al. and study the local dispersion relation of
heterostructure waveguide.
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4. LOCAL DISPERSION IN PHOTONIC CRYSTAL
WAVEGUIDE INTERFACES

Interface states are states bounded to the interface between two semi-
infinite materials, which usually decay exponentially in both of these
materials. Interface states can strongly affect the transmission of
light between two media. Nevertheless, these bound states do not
necessarily appear for all surface terminations, but at least will appear
at some cases [21]. The PC heterostructure, which we study in this
paper is very similar to the one studied by Song et al. consisting of two
PC waveguides, one stretched by a small amount along the waveguiding
direction [12]. As it is shown in Figure 4, the structure consists of a
W1 PC waveguide in a triangular lattice of air holes in silicon. The left
waveguide with the horizontal periodicity of a1 = 0.41 µm is connected
to the right one, which has the horizontal periodicity of a2 = 0.43µm.
In both structures the air holes have radius of r = 0.1218µm.

We have presented a novel method to calculate the local dispersion
relation in arbitrary photonic crystal waveguides, which is more
suitable for local study of dispersion and the special cases of non
periodic and finite waveguides. The method is based on the finite
difference time domain simulation and Filter Diagonalization Method
(FDM), and the accuracy of the results for local studies is much
better than Spatial Fourier Transform (SFT), which simply uses the
Fourier transform. Generally, numerical methods for study of arbitrary
photonic structures which are commonly applied are either PWE or
Transfer Matrix Method (TMM), none of which are suitable for study
of PC interfaces.

Here, FDM approach is applied to study the dispersion of butt-
joint waveguide shown in Figure 4. The scattered data points in

Figure 4. Schematic view of two butt-joint waveguides forming a
heterostructure with different periodicities a1 and a2.
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Figure 5. Comparison of PWE (solid lines) and FDM results
(symbols) for the PC heterostructure at the (a) left waveguide, (b) the
right waveguide and (c) the interface of both waveguides. The dark
rectangles in the schematic insets show the windows in which the local
dispersions are calculated.

Figure 5 show the local dispersion relation at three positions of the
butt-joint waveguide. These data points are comparable with PWE
calculation of individual waveguides, shown as solid lines. Note that
the dispersion relations of the heterostructure are shown without
folding because of different periodicity of two waveguide structures,
and thus different sizes of the 1st Brillouin zone. The local dispersion
relation was calculated over the three windows depicted as black
rectangles in the inset of Figure 5. The window size is about 4 times
the period of the PC waveguide; therefore the calculated dispersion
can be fairly called as local dispersion.

As it is shown in Figure 5, if the window is fully within one of the
PC waveguides, the local dispersion calculated by FDM method is in
quite good agreement with the corresponding dispersion calculated by
PWE. By moving the window toward the interface, the local dispersion
calculated by FDM stays single mode, but does not fit to any of
two PWE dispersions. Surprisingly, the local dispersion at interface
lies on the middle of two PWE dispersion curves. We describe this
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Figure 6. Dispersion relations of hexagonal PC structures with
horizontal period of 0.41µm (dash line) and 0.43µm (dash-dot line).
The period along the second primitive vector is identical for both
structures and equals to 0.41µm. The solid curve represents the
transmission through the hetero-structure.

mode as a hybrid mode which is formed at the interface as a result of
superposition of existing modes in adjacent waveguides.

Another important characteristic of an interface is the transmis-
sion properties. In order to calculate the transmission diagram, we
have used a pulsed source centered at the frequency 1/λ = 0.58µm−1.
We can see a large transmission for the frequencies in the range of
0.525µm−1 to 0.685µm−1, which is the common waveguiding range
in two waveguides. On the other hand, there is a dramatic drop by a
factor of 100 where the frequency falls into the mode gaps. This is an
expected consequence of reflection by one of the waveguides, while the
other one still guides the wave.

5. LOCAL DISPERSION IN PHOTONIC CRYSTAL
DOUBLE-HETEROSTRUCTURES

It has been found that the confinement mechanism in double
heterostructures is slightly different from that of PC cavities. The
abrupt change in the electric field, which happens at the edges of PC
cavities, results in significant leaky components. The resulting leakage
in out of plane direction does not satisfy the conditions of total internal
reflection, which results in low cavity Q factors. Generally, cavities
with smooth electric-field distributions have less leaky components,
which result is higher Q factors. In order to improve the confinement
in PC cavities and optimize the PC structure, one can use a PC double-
heterostructure waveguide. The confinement mechanism of the field in
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double-heterostructure cavities along the waveguide is based on the
mode-gap effect [8, 12]. Investigation of the field profile in double-
heterostructures show that the field distribution can be well fitted to
a Gaussian function which results in a higher Q factor in the cavity.
The discussion about Q factor is out of the scope of this paper, and it
is well studied in literature [12].

In recent studies, the PWE method is used to investigate the
mode-gap effect [12]. An important point which has not yet been
considered is that the PWE is only valid for infinitely periodic
structures, although in some studies it is applied to investigate the
dispersion in non-periodic arrangements [12]. In DHS waveguides,
the periodicity is broken along the waveguiding direction. Regarding
to the fact that the dispersion relation is not a quantity to be
changed abruptly at the interface, one can not simply adjoin two
different dispersions to describe an interface. Nevertheless, the analogy
described by Song et al. can describe the localization mechanism to a
large extends.

Here we have used the FDM method to calculate the local
dispersion at various positions of a DHS shown in Figure 7. The
DHS consists of a W1 PC waveguide with horizontal periodicity of
a2 = 0.43 µm, sandwiched between two W1 PC waveguides with
horizontal periodicity of a1 = 0.41µm. The air holes have a constant
radius of r = 0.1218µm. The procedures of dispersion calculation by
PWE and local dispersion calculation by FDM are similar to those
we already discussed in previous section. Selected results of the local
dispersion calculation at several locations are shown in Figure 8. As
we can see in Figures 8(a), (e), (f), if the window is fully inside one of
the PC waveguides, the local dispersion calculated by FDM method is

Figure 7. Schematic view of a double heterostructure consists of a
waveguide of periodicity a2 sandwiched between two waveguides of
periodicity a1.
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(a) (b)

(c) (d)

(e) (f)

Figure 8. Local dispersion relation and comparison with PWE
results. The window is located at different position, indicated with
rectangle, moving along PC waveguide double heterostructures. The
dark rectangle in the schematic insets shows the window in which the
local dispersion in calculated.

in a very good agreement with the corresponding dispersion calculated
by PWE. Similar to the heterostructure studied earlier, by moving the
window toward the interface, the local dispersion stays single mode,
however it neither fits to any of the two PWE dispersions, nor falls
in the middle of the dispersion of neighboring waveguides. As it is
seen in Figure 8(c), the dispersion of a DHS waveguide calculated
on a window located exactly at the interface, tends to the dispersion
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of outer waveguides. One can argue that the guiding mode at this
interface gets a stronger influence from the outer waveguides than the
middle waveguide. In fact the effective area still holding the dispersion
of middle waveguide is only about 3 × a2, which is shorter than the
geometrical length of the waveguide that is 5× a2.

6. CONCLUSION

We studied the stretching effect, which increases the distance between
neighboring rods along the guiding direction of PC waveguides. By
continuously changing the stretching factor, we observed that the
band gap and guiding region shorten in frequency, while the mode
gap width remains unchanged. By connecting two waveguides with
different stretching factors, we arranged a PC waveguide interface or
so-called PC heterostructure.

We studied the local dispersion properties of a PC interface and a
double hetero-structure waveguide by applying two different methods.
We have applied FDM method to the field distribution snapshots of the
FDTD simulations to study the local dispersion relation of hetero- and
double hetero-structure waveguides. The dispersion relation results
were compared with those calculated by the standard PWE technique.
It is described that PWE uses an assumption of infinite waveguides.
Therefore, it is not suitable for describing the dispersion at the
interface, since interface modes are not similar to any of the adjacent
waveguiding modes.

We have also studied the local dispersion relation in the double-
hetero-structure waveguide previously reported by Song et al. The
local dispersion results of the FDM method show a smooth switching
between the modes of two different structures. The dispersion at
the interfaces of a double hetero-structure waveguide tends to the
dispersion of outer waveguides. The effective area still holding the
dispersion of the middle waveguide is shorter than the geometrical
length of the middle waveguide. The results of this study provide new
insight into study local dispersion in any arbitrary photonic interface
or double heterostructure.
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