Vol. 14
Latest Volume
All Volumes
PIERM 130 [2024] PIERM 129 [2024] PIERM 128 [2024] PIERM 127 [2024] PIERM 126 [2024] PIERM 125 [2024] PIERM 124 [2024] PIERM 123 [2024] PIERM 122 [2023] PIERM 121 [2023] PIERM 120 [2023] PIERM 119 [2023] PIERM 118 [2023] PIERM 117 [2023] PIERM 116 [2023] PIERM 115 [2023] PIERM 114 [2022] PIERM 113 [2022] PIERM 112 [2022] PIERM 111 [2022] PIERM 110 [2022] PIERM 109 [2022] PIERM 108 [2022] PIERM 107 [2022] PIERM 106 [2021] PIERM 105 [2021] PIERM 104 [2021] PIERM 103 [2021] PIERM 102 [2021] PIERM 101 [2021] PIERM 100 [2021] PIERM 99 [2021] PIERM 98 [2020] PIERM 97 [2020] PIERM 96 [2020] PIERM 95 [2020] PIERM 94 [2020] PIERM 93 [2020] PIERM 92 [2020] PIERM 91 [2020] PIERM 90 [2020] PIERM 89 [2020] PIERM 88 [2020] PIERM 87 [2019] PIERM 86 [2019] PIERM 85 [2019] PIERM 84 [2019] PIERM 83 [2019] PIERM 82 [2019] PIERM 81 [2019] PIERM 80 [2019] PIERM 79 [2019] PIERM 78 [2019] PIERM 77 [2019] PIERM 76 [2018] PIERM 75 [2018] PIERM 74 [2018] PIERM 73 [2018] PIERM 72 [2018] PIERM 71 [2018] PIERM 70 [2018] PIERM 69 [2018] PIERM 68 [2018] PIERM 67 [2018] PIERM 66 [2018] PIERM 65 [2018] PIERM 64 [2018] PIERM 63 [2018] PIERM 62 [2017] PIERM 61 [2017] PIERM 60 [2017] PIERM 59 [2017] PIERM 58 [2017] PIERM 57 [2017] PIERM 56 [2017] PIERM 55 [2017] PIERM 54 [2017] PIERM 53 [2017] PIERM 52 [2016] PIERM 51 [2016] PIERM 50 [2016] PIERM 49 [2016] PIERM 48 [2016] PIERM 47 [2016] PIERM 46 [2016] PIERM 45 [2016] PIERM 44 [2015] PIERM 43 [2015] PIERM 42 [2015] PIERM 41 [2015] PIERM 40 [2014] PIERM 39 [2014] PIERM 38 [2014] PIERM 37 [2014] PIERM 36 [2014] PIERM 35 [2014] PIERM 34 [2014] PIERM 33 [2013] PIERM 32 [2013] PIERM 31 [2013] PIERM 30 [2013] PIERM 29 [2013] PIERM 28 [2013] PIERM 27 [2012] PIERM 26 [2012] PIERM 25 [2012] PIERM 24 [2012] PIERM 23 [2012] PIERM 22 [2012] PIERM 21 [2011] PIERM 20 [2011] PIERM 19 [2011] PIERM 18 [2011] PIERM 17 [2011] PIERM 16 [2011] PIERM 14 [2010] PIERM 13 [2010] PIERM 12 [2010] PIERM 11 [2010] PIERM 10 [2009] PIERM 9 [2009] PIERM 8 [2009] PIERM 7 [2009] PIERM 6 [2009] PIERM 5 [2008] PIERM 4 [2008] PIERM 3 [2008] PIERM 2 [2008] PIERM 1 [2008]
2010-08-23
A Simple EM Model for Determining the Scattered Magnetic Resonance Radiofrequency Field of an Implanted Medical Device
By
Progress In Electromagnetics Research M, Vol. 14, 1-14, 2010
Abstract
A radiofrequency field (RF) field exists inside body tissue during magnetic resonance imaging (MRI). If any implanted medical device is present, there can be a very intense concentration of the scattered RF field in the tissue surrounding certain parts of the implant. This causes tissue heating that can reach dangerous levels. Scattered field considerations show that it is possible to neglect the loading effect of the implant on the MR RF source. This leads to an incident field simplification. The presence of the implant in nonhomogeneous tissue increases the complexity of the scattering problem. An approach is presented that makes the computational problem considerably smaller. A method of moments (MoM) formulation of the electromagnetic model is presented. The relevant issues that arise during a finite element method (FEM) formulation are also discussed. The methods are illustrated by solving the problem for a typical implant using MoM as well as FEM.
Citation
Syed Mohsin, "A Simple EM Model for Determining the Scattered Magnetic Resonance Radiofrequency Field of an Implanted Medical Device," Progress In Electromagnetics Research M, Vol. 14, 1-14, 2010.
doi:10.2528/PIERM10043006
References

1. Amjad, A., R. Kamondetdacha, A. V. Kildishev, S. M. Park, and J. A. Nyenhuis, "Power deposition inside a phantom for testing of MRI heating," IEEE Trans. Magn., Vol. 41, No. 10, 4185-4187, Oct. 2005.
doi:10.1109/TMAG.2005.854840

2. Jin, J. M., J. Chen, W. C. Chew, H. Gan, R. L. Magin, and P. J. Dimbylow, "Computation of electromagnetic fields for high-frequency magnetic resonance imaging applications," Phys. Med. Biol., Vol. 41, 2719-2738, 1996.
doi:10.1088/0031-9155/41/12/011

3. Mohsin, S. A., N. M. Sheikh, and W. Abbas, "MRI induced heating of artificial bone implants," Journal of Electromagnetic Waves and Applications, Vol. 23, No. 5--6, 799-808, 2009.
doi:10.1163/156939309788019796

4. Mohsin, S. A., N. M. Sheikh, and U. Saeed, "MRI-induced heating of deep brain stimulation leads," Phys. Med. Biol., 5745-5756, 2008.
doi:10.1088/0031-9155/53/20/012

5. Mohsin, S. A., U. Saeed, J. Nyenhuis, and N. M. Sheikh, "Interaction of the RF field with stent devices during diagnostic and interventional magnetic resonance imaging," USNC/URSI National Radio Science Meeting, San Diego, CA, USA, Jul. 5--12, 2008.

6. Nyenhuis, J. A., S. M. Park, R. Kamondetdacha, A. Amjad, F. G. Shellock, and A. Rezai, "MRI and implanted medical devices: Basic interactions with an emphasis on heating," IEEE Trans. Device and Materials Reliability, Vol. 5, No. 3, Sep. 2005.

7. Yeung, C. J., R. C. Susil, and E. Atalar, "RF safety of wires in interventional MRI: Using a safety index," Magnetic Resonance in Medicine, Vol. 47, 187-193, 2002.
doi:10.1002/mrm.10037

8. Shellock, F. G., "Magnetic resonance safety update 2002: Implants and devices," Journal of Magnetic Resonance Imaging, Vol. 16, 485-496, 2002.
doi:10.1002/jmri.10196

9. Mohsin, S. A., N. M. Sheikh, and U. Saeed, "MRI induced heating of deep brain stimulation leads: Effect of the air-tissue interface," Progress In Electromagnetics Research, Vol. 83, 81-91, 2008.
doi:10.2528/PIER08040504

10. Amjad, A., "Specific absorption rate during magnetic resonance imaging,", Ph.D. Thesis, Purdue University, 2007.

11. Park, S.-M., R. Kamondetdacha, and J. A. Nyenhuis, "Calculation of MRI-induced heating of an implanted medical lead wire with an electric field transfer function," Journal of Magnetic Resonance Imaging, Vol. 26, 1278-1285, 2007.
doi:10.1002/jmri.21159

12. Balanis, C. A., Advanced Engineering Electromagnetics, John Wiley & Sons, 1989.

13. Harrington, R. F., Field Computation by Moment Methods, Wiley-Interscience and IEEE Press Series on Electromagnetic Wave Theory, 1993.
doi:10.1109/9780470544631

14. Harrington, R. F., Time-harmonic Electromagnetic Fields, No. 3, 1961.

15. Rumsey, V. H., "Reaction concept in electromagnetic theory," Phys. Rev., Vol. 94, No. 6, 1483-1491, 1954.
doi:10.1103/PhysRev.94.1483

16. Volakis, J. L., A. Chatterjee, and L. C. Kempel, Finite Element Method for Electromagnetics, The IEEE/OUP Series on Electromagnetic Wave Theory, 1998.
doi:10.1109/9780470544655

17. Jin, J. M., The Finite Element Method in Electromagnetics, 2nd Ed., John Wiley and Sons, 2002.

18. Mohsin, S. A., N. M. Sheikh, F. Mahmood, and W. Abbas, "General considerations regarding scattering of the MRI RF field by implanted medical devices," Pakistan Journal of Engineering and Applied Sciences, Vol. 6, 17-25, Jan. 2010.

19. Khalatbari, S., D. Sardari, A. A. Mirzaee, and H. A. Sadafi, "Calculating SAR in two models of the human head exposed to mobile phones radiations at 900 and 1800 MHz," PIERS Online, Vol. 2, No. 1, 104-109, 2006.
doi:10.2529/PIERS050905190653

20. Ibrahiem, A., C. Dale, W. Tabbara, and J. Wiart, "Analysis of the temperature increase linked to the power induced by RF source," Progress In Electromagnetics Research, Vol. 52, 23-46, 2005.
doi:10.2528/PIER04062501

21. Kouveliotis, K. and C. N. Capsalis, "Prediction of the SAR level induced in a dielectric sphere by a thin wire dipole antenna," Progress In Electromagnetics Research, Vol. 80, 321-336, 2008.
doi:10.2528/PIER07112804

22. Kuo, L.-C., Y.-C. Kan, and H.-R. Chuang, "Analusis of a 900/1800-MHz dual-band gap loop antenna on a handset with proximate head and hand model," Journal of Electromagnetic Waves and Applications, Vol. 21, No. 1, 107-122, 2007.
doi:10.1163/156939307779391722