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Abstract—A radiofrequency field (RF) field exists inside body tissue
during magnetic resonance imaging (MRI). If any implanted medical
device is present, there can be a very intense concentration of
the scattered RF field in the tissue surrounding certain parts of
the implant. This causes tissue heating that can reach dangerous
levels. Scattered field considerations show that it is possible to
neglect the loading effect of the implant on the MR RF source.
This leads to an incident field simplification. The presence of
the implant in nonhomogeneous tissue increases the complexity of
the scattering problem. An approach is presented that makes the
computational problem considerably smaller. A method of moments
(MoM) formulation of the EM model is presented. The relevant issues
that arise during a finite element method (FEM) formulation are also
discussed. The methods are illustrated by solving the problem for
typical implants using MoM as well as FEM.

1. INTRODUCTION

During MRI, three types of fields are used. Two of the fields, a uniform
and static magnetic field, and low frequency gradient magnetic fields
do not pose a heating risk, but the third field, the RF field, poses
a significant heating risk inside body tissues. The source of the RF
field is a coil, usually called a birdrcage coil, since it encloses the
MRI chamber. The incident RF field is that which exists inside the
chamber in the absence of body tissue. When body tissue is present
inside the chamber, a scattered field is produced and the total field
at any point inside the chamber (inside tissue or in air) is the sum
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of the scattered and incident fields. The loading effect of body tissue
on the RF source cannot be neglected and a computational domain
will include the chamber and the RF coil conductors. The scattered
field is concentrated in some parts of the body and there is some
heating due to the flow of conduction currents, but this heating is much
below hazardous levels [1, 2]. When one or more implanted medical
devices such as deep brain stimulation (DBS) leads, other lead devices,
pacemakers, stents, artificial bone or bone support implants, etc. [3–5],
are present inside tissue, an additional scattered field is produced. This
scattered field can be very concentrated in the tissue surrounding the
implant or certain parts of it [6]. The resulting heating, though limited
to small tissue regions can be very hazardous [7, 8]. An exact scattering
formulation will involve integrations over the the entire tissue region,
the implant, as well as surface integrations over the conductors of the
surrounding MR birdcage coil. The scattered field, though, decays very
rapidly with distance as we move away from the implant [9]. Thus the
loading affect of the implant on the MR coil (the actual MR RF source)
can be neglected. Therefore, the RF field that exists inside tissue in
the absence of any implant needs to be computed first. This computed
field can then be used as the incident field when an implant is present.
The problem of an implant embedded in nonhomogeneous tissue can
then be investigated. In the present paper, a simple electromagnetic
(EM) model for the problem is developed and a MoM formulation
based on this simplified approach is presented. The issues that arise
during a FEM formulation are also addressed. It should be noted that
a simplified (general) approach for determining the scattered MR RF
field of any implant is developed here; the approach is not restricted
to a particular kind of implant. For validation, the approach has been
used for computing the scattered fields and induced temperature rises
of two different implants in Section 4. Computations are made with
both MoM and FEM and the computed results are also compared with
measurements made in the laboratory.

2. THE INCIDENT AND THE SCATTERED FIELDS

Consider body tissue inside a MR coil with no implant present. The
total field (E,H) at any point must satisfy

~∇×H = J + jωεoE
~∇×E = −jωµoH

}
(1)

where in air J = 0, over the MR RF source (i.e., the MR coil) J
is the source current density, and in tissue J = [σ + jω(ε− εo)] E
where the tissue conductivity σ and permittivity ε are functions of
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position. The field (E,H) may be computed by employing a suitable
numerical method such as the Finite Difference Time Domain (FDTD)
method [10]. It should be noted here that the loading effect of body
tissue on the MR RF source must be considered and is part of the
computation.

Now consider an implant embedded in tissue. In an ideal analysis,
we should consider the whole system again and find the field (E,H) at
any point satisfying the Maxwell’s Equations (1); the only difference
is that the implant embedded in tissue occupies a volume V I in which
J = [σI + jω(εI − εo)] E, where σI is the conductivity and εI the
permittivity of the implant material (these take on different values
over the implant structure). This whole computation would be very
expensive indeed (see Section 3). Some a-priori considerations can lead
to simplified approach and the resulting computation will be far less
expensive. We now discuss these considerations.

The scattered field of an implant becomes small 3–5 cm away from
the implant [9, 11]. Let d be the distance from an observation point
to the nearest point on the implant structure. We define do as that
minimum value of d at which the scattered field can be considered as
having become negligible. Negligible here means that the total electric
field is within a few volts per meter of the background electric field,
where the background field is that field that exists in body tissue during
MRI in the absence of any medical implant (s). This consideration can
be from a source perspective, that is, the equivalent source current
density produced in tissue, J = [σ + jω(ε− εo)] E, is small. From
a practical perspective, J of a significant strength will exist only at
points in the vicinity of the implant. For most implants, a value of
do in the range 3–5 cm will suffice. As we move in tissue around the
implant structure, the value of do will depend upon:

• the specific part of the implant to which this distance do is
measured. For example, do will be comparatively larger around
the electrodes of a DBS lead implant than around the connecting
part of the lead. Other examples of parts of implants around which
do is larger than the rest of the implant structure are: protruding
metal tip of a long insulated lead implant, tip of a steel pin in a
bone support frame, round metal end of an artificial hip joint, and
the ends of a stent.

• the type and nature of the overall implant structure.
• the tissue composition. For example fat is less dissipative (lossy)

than muscle tissue.

We now explain why it is often possible to assume tissue as a medium
infinite in extent for implant scattering. The air-tissue interface effect
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is actually quite small and for implants at an implantation depth of
1 cm or more it is negligible. Even when the implant is embedded just
below the skin (e.g., DBS lead implants), the air-tissue interface effect
is still very small [9]. The fact that an implant may not lie near the
interface along the implant’s entire length or extent further lessens the
interface effect. For most practical cases, the air-tissue interface effect
can be safely neglected, and the implant can be considered as being
embedded in tissue that extends to infinity in all directions.

The considerations discussed above lead us to the conclusion that
the loading effect of the implant on the MR RF source (the birdcage
coil) is negligible and the total RF field (E, H) that exists in tissue
in the absence of any implant can be set equal to the incident field
(Ei, Hi) where (Ei, Hi) is taken to be the incident field that excites
the implant structure embedded in tissue.

Tissue is nonhomogeneous in nature. Since as discussed above,
do is small, the nonhomogeneous nature of tissue will matter
in the only in the vicinity of the implant. We only need to
consider a nonhomogeneous tissue layer having thickness do completely
surrounding the implant structure (and, touching the implant’s
exterior surface). For further reduction in the size of the computation,
the thickness of the encompassing nonhomogeneous tissue layer can be
taken as do/2 or do/4, or even smaller. The rest of the tissue, called
background tissue here, extends to infinity in all outward directions and
has the constitutive parameters of average body tissue. We specify the
constitutive parameters of the various sub-regions as:

• σI is the conductivity and εI the permittivity of the implant
material occupying the volume V I (these assume different values
in the different material parts constituting the implant).

• σ is the conductivity and ε the permittivity of the nonhomoge-
neous tissue surrounding the implant. This occupies a volume,
V t. Note that σ and ε are functions of position in V t.

• σb is the conductivity and εb the permittivity of the background
tissue, occupying volume, V b. Note that σb and εb are not
functions of position in V b and that V b extends to infinity in all
outward directions.

The scattered field (Es, Hs) at any point then satisfies

~∇×Hs = J + (σb + jωεb)Es

~∇×Es = −jωµoHs

}
(2)
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where

J = [(σI−σb)+jω(εI−εb)]Es+[(σI−σ)+jω(εI−ε)] Ei in V I (3a)
J = [(σ − σb) + jω(ε− εb)]Es in V t (3b)

J = 0 in V b (3c)

Using the scattered vector magnetic potential As, [12], we obtain the
scattered RF electric field as

Es = − j

ωµo

~∇(~∇ ·As)
(εb − jσb/ω)

− jωAs (4)

3. COMPUTATIONAL METHODS

3.1. Discretization Using the Method of Moments

The discretization of the EM problem described by Eqs. (2) and (3)
using the method of moments is presented here. Following the
procedure outlined in [13], the formulation uses the Green’s function
of the wave equation for an infinite domain. Using Eq. (4), an operator
L(J) can be defined

L(J) = −Es =
j ~∇(~∇ ·As)

ωµO(εb − jσb/ω)
+ jωAs (5)

where As, the retarded vector magnetic potential, has the usual
integral formulation over the volumes V I and V t (where J is nonzero).
J is given by Eq. (3). Then we have from Eqs. (3) and (5)

L(J) +
J

(σ − σb) + jω(ε− εb)
= 0 in V t (6)

L(J)+
J

(σI−σb)+jω(εI−εb)
=

[(σI−σ)+jω(εI−ε)]Ei

(σI−σb)+jω(εI−εb)
in V I (7)

For vector fields u and v we define an inner product as

〈u,v〉V =
∫

V

u·vdV (8)

over an appropriate volume V (which is V t ∪ V I here). The current
density in V t and V I is expressed in terms of a summation of vector
basis functions J1,J2, . . . ,JN

J =
N∑

n=1

an Jn (9)
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where the an are complex coefficients. We define vector testing
functions W1,W2, . . . over V . Using Galerkin’s procedure we can
set Wm = Jn, n = 1, 2, . . . , N . We note that 〈Wm, Es 〉V is a
reaction [14, 15]. Applying the method of moments we obtain

N∑

n=1

In

∫

V t

Wm·
[
L(Jn) +

Jn

(σ − σb) + jω(ε− εb)

]
dV

+
N∑

n=1

In

∫

V I

Wm·
[
L(Jn) +

Jn

(σI − σb) + jω(εI − εb)

]
dV

=
∫

V I

Wm · [(σI − σ) + jω(εI − ε)] Ei dV

(σI − σb) + jω(εI − εb)
(10)

for all m and L(Jn) can be computed using the integral form for As,
and (5). Eq. (10) can be written as the matrix equation

[
Zmn + Ẑmn

]
[Im] = [Vm] (11)

where

[Zmn] =




〈
W1, L(J1) + J1

ζt

〉
V t

〈
W1, L(J2) + J2

ζt

〉
V t

· · ·
〈
W2, L(J1) + J1

ζt

〉
V t

〈
W2, L(J2) + J2

ζt

〉
V t

· · ·
...

...
...




the inner products in [Zmn] denoting integrations over V t and

ζt = σ − σb + jω(ε− εb)

[Ẑmn] =




〈
W1, L(J1) + J1

ζI

〉
V I

〈
W1, L(J2) + J2

ζI

〉
V

I
· · ·

〈
W2, L(J1) + J1

ζI

〉
V I

〈
W2, L(J2) + J2

ζI

〉
V I

· · ·
...

...
...




the inner products in [Ẑmn] denoting integrations over V I and

ζI = σI − σb + jω(εI − εb)

[Im] =




a1

a2
...

aN


 [Vm] =




〈W1,F〉
VI

〈W2,F〉
VI

...

...
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the inner products in [Vm] denoting integrations over V I and

F =
[(σI − σ) + jω(εI − ε)] Ei

ζI

The solution is
J = [Jn][Im] = [Jn][Ym][Vm] (12)

where [Ym] is the inverse of the matrix
[
Zmn + Ẑmn

]
.

3.2. Using the Finite Element Method

The size of the computational domain for FEM is finite and absorbing
boundary conditions are enforced at the exterior boundaries. The FEM
procedural details can be found in [16, 17]. Some of the pertinent
issues regarding scattering by implants will be discussed here. Since
for almost all implants, a value of do in the range 3–5 cm suffices (see
Section 2), the FEM domain can be terminated at a distance of do from
a point on the surface of the implant structure. In many implanted
medical devices (e.g., lead implants, stents, artificial joints) the radial
dimension is much smaller than the length [18]; for example, DBS
leads have a diameter of about 1.5 mm but can be as long as 70 cm.
For a reasonable analysis that gives meaningful results, the surface
of the lead will have to be meshed very finely as compared to the
rest of the domain. The nonhomogeneous tissue layer surrounding
the lead (as discussed in Section 2) is the next in the priority of fine
meshing. Parts of this tissue layer such as those surrounding the lead’s
electrodes need to be meshed more finely than the rest of the tissue.
The background tissue, extending to the exterior boundaries of the
domain, can be meshed less finely. Similar meshing considerations
apply to parts of other implants (such as the tips of implanted steel
pins in bone support frames, tips of implanted artificial joints, etc.)
and the tissue immediately surrounding those parts. The very large
number of elements required to finely mesh the implant structure can
be as large or even larger than the number of elements used to mesh
the rest of the domain This means that a computation over a large-
sized domain (such as that containing all of the body tissue, air, and
the MR birdcage coil, as mentioned in Section 2) in the absence of
an implant would be much less expensive than in the presence of the
implant.

4. RESULTS AND COMPARISONS

The computational methods presented in the present paper are applied
to two different implants to demonstrate their applicability and
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correctness. To demonstrate the robustness of the methods, a stent
implant and a lead implant with four electrodes have been chosen.
The computed results for these implants are compared to each other
and to laboratory measurements as well. The implants merely serve
as example implants to which the methods discussed in the paper can
be applied; the emphasis is on the computational methods and not
on the analysis of the example implants only. It is to be noted that
the methods are perfectly general and can be applied to the MR RF
scattering analysis of any implant.

Computations have been carried out on the two example implants
in a 1.5 Tesla MR system. The MRI radiofrequency is 64 MHz. The
first implant, a cylindrical stent, is 15 cm long and has a diameter of
8 mm. The stent has a thin plastic wall which contains a very finely
woven metal wire mesh. At MRI RF frequencies, the capacitances
between the thin wires short out the wires and the walls can be
modeled as PEC (perfect electric conductor) surfaces; this suffices
for an analysis covering the worst-case heating scenario. The second
implant, a lead, consists of four insulated wires connecting a periodic
pulse generator to four electrodes. The overall length of the lead
(including the electrodes) is 25 cm. Each electrode is a solid metal
cylinder, 1.27mm in diameter and 1.5 mm long. The four electrodes
are separated by insulation 1.5mm thick. For each implant (considered
separately), the scattered electric field is computed using MoM and the
simplified EM model as described in Section 3.1. The scattered electric
field is also found by applying FEM to the simplified EM model; the
electric field wave equation is solved by employing the considerations
outlined in Section 3.2. Comsol Multiphysics has been used as the
partial differential equation solver. The heat equation, [6], is solved to
find the temperature rises.

For the in-vitro temperature rise measurements, a phantom was
placed inside an MRI RF coil. The phantom consisted of a salt solution
(sodium chloride and polyacrylic acid partial sodium salt) with gel
inside a plastic trough approximating the shape of the human body.
The phantom was positioned so that landmark (center of the MRI RF
coil) was well inside the phantom at the desired position. The MR RF
input power was then adjusted such that:

• The background specific absorption rate (SAR), [6], was 2.10
W/kg at the landmark in phantom material with σ = 0.27 S/m
and εr = 77. Background SAR means that it is the SAR with
no implant present in the phantom. The stent was then placed
inside the phantom such that its center (lengthwise) was at the
landmark. The corresponding amplitude of the incident RF
electric field at the landmark was 124.7 V/m.
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• The background SAR was 2.35W/kg at the landmark in phantom
material with σ = 0.47 S/m and εr = 80. The lead was then
placed inside the phantom such that its center (lengthwise) was
at the landmark. The corresponding incident RF electric field at
the landmark was 100 V/m.
The computations have been carried out to conform to this level

of incident RF field excitation so that the computed and measured
values can be directly compared without any scaling. The relationship
between the background SAR at the landmark and the MRI input
power is almost linear. The highest values of the incident RF electric
field occur in fat tissue with σ = 0.1 S/m and εr = 10. For the given
levels of the background SAR, the incident RF electric field (amplitude)
values are 205 V/m (for the stent) and 216.8V/m (for the lead).

The spatial electric field distribution obtained using the simplified
FEM for the stent implant is shown in Fig. 1. The corresponding
computed temperature rise distribution is shown in Fig. 2. Spatial
distributions for the lead implant are shown in Figs. 3 and 4.
The spatial distributions obtained using simplified MoM, and those
obtained using the full MRI domain (full FEM) are essentially the

Figure 1. Spatial electric field distribution around the 15 cm long
stent implant. The implant is the inner cylinder with an intense RF
electric field around its ends. The outer box is for meshing purposes
only. The round mark below the left-half of the stent is an insulation
post.
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Figure 2. Spatial temperature rise distribution around the stent
implant after MR power has been applied for sixteen minutes.

Figure 3. Spatial electric field distribution around the lead implant.

same as those obtained using simplified FEM, there being only a small
difference in the overall value. This is best stated quantitatively. Let
E be the magnitude of the RF electric field at any space point. Then
the following is found to hold for the computed values:∣∣∣∣

E|MoM − E|other

E|MoM

∣∣∣∣ < 0.03
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Figure 4. Spatial temperature rise distribution around the lead
implant after MR power has been applied for six minutes.

Table 1. Comparisons between the different computed and measured
temperature rises. For the stent the values are at a point near the tip
and 0.4mm away from the stent’s surface. For the lead, the values
are at a point 0.4 mm away from the surface of the proximal electrode.
The values of the temperature rise are after MR RF input power has
been applied for t (minutes).

Simplified FEM:  

Temperature rise ( C)  

 after time t (minutes) 

Simplified MoM:  

Temperature rise ( C)  

 after time t (minutes) 

Measured  

temperature rise ( C) 

after time t (minutes) 

Stent Lead Stent Lead Stent Lead 

t = 10 t = 12 t = 16 t = 6  t = 8 t = 10 t = 10 t = 12 t = 16 t = 6 t = 8 t = 10 t = 10 t = 12 t = 16 t = 6 t = 8 t = 10 

4.58 5.19 5.64 23.3 24.2 24.8 4.32 4.90 5.32 22.6 23.1 23.5 4.1 4.6 4.9 21.8 22.6 23.0 

o oo

where the subscript ‘other’ refers to the simplified FEM or the full
FEM. The relation holds at any arbitrary point and ensures that the
difference in the E field values computed at a point by the various
methods is small (less than 3% of the MoM value). Table 1 shows
comparisons between the computed and in-vitro measured temperature
rises. The measurements were made in the phantom using temperature
probes with fiber optic leads. The temperature rises are at a point near
the tip of each implant and 0.4 mm from the implant’s surface. Each
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value is a little less than the spatial maximum which occurs at the
implant surface.

5. CONCLUSION

The computationally large and expensive problem of the scattering
of the MR radiofrequency field by one or more implanted medical
devices can be reduced to a simpler one by making some intelligent
simplifications in the EM model of the problem. The first simplification
is about the MR incident field and the second simplification is about
the nonhomogeneous tissue in which an implanted device is embedded.
The problem is solved using the simplified EM model and two different
numerical techniques, FEM and MoM, are employed. It is found that
the computed values agree well with each other as well as with in-vitro
measurements made in the laboratory, thus establishing the validity
of the simplified EM model. For scattering problems involving other
RF sources present near body tissue [19–22] with one or more medical
devices implanted in tissue, the model can be used to simplify these
problems as well.
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