Vol. 105
Latest Volume
All Volumes
PIER 180 [2024] PIER 179 [2024] PIER 178 [2023] PIER 177 [2023] PIER 176 [2023] PIER 175 [2022] PIER 174 [2022] PIER 173 [2022] PIER 172 [2021] PIER 171 [2021] PIER 170 [2021] PIER 169 [2020] PIER 168 [2020] PIER 167 [2020] PIER 166 [2019] PIER 165 [2019] PIER 164 [2019] PIER 163 [2018] PIER 162 [2018] PIER 161 [2018] PIER 160 [2017] PIER 159 [2017] PIER 158 [2017] PIER 157 [2016] PIER 156 [2016] PIER 155 [2016] PIER 154 [2015] PIER 153 [2015] PIER 152 [2015] PIER 151 [2015] PIER 150 [2015] PIER 149 [2014] PIER 148 [2014] PIER 147 [2014] PIER 146 [2014] PIER 145 [2014] PIER 144 [2014] PIER 143 [2013] PIER 142 [2013] PIER 141 [2013] PIER 140 [2013] PIER 139 [2013] PIER 138 [2013] PIER 137 [2013] PIER 136 [2013] PIER 135 [2013] PIER 134 [2013] PIER 133 [2013] PIER 132 [2012] PIER 131 [2012] PIER 130 [2012] PIER 129 [2012] PIER 128 [2012] PIER 127 [2012] PIER 126 [2012] PIER 125 [2012] PIER 124 [2012] PIER 123 [2012] PIER 122 [2012] PIER 121 [2011] PIER 120 [2011] PIER 119 [2011] PIER 118 [2011] PIER 117 [2011] PIER 116 [2011] PIER 115 [2011] PIER 114 [2011] PIER 113 [2011] PIER 112 [2011] PIER 111 [2011] PIER 110 [2010] PIER 109 [2010] PIER 108 [2010] PIER 107 [2010] PIER 106 [2010] PIER 105 [2010] PIER 104 [2010] PIER 103 [2010] PIER 102 [2010] PIER 101 [2010] PIER 100 [2010] PIER 99 [2009] PIER 98 [2009] PIER 97 [2009] PIER 96 [2009] PIER 95 [2009] PIER 94 [2009] PIER 93 [2009] PIER 92 [2009] PIER 91 [2009] PIER 90 [2009] PIER 89 [2009] PIER 88 [2008] PIER 87 [2008] PIER 86 [2008] PIER 85 [2008] PIER 84 [2008] PIER 83 [2008] PIER 82 [2008] PIER 81 [2008] PIER 80 [2008] PIER 79 [2008] PIER 78 [2008] PIER 77 [2007] PIER 76 [2007] PIER 75 [2007] PIER 74 [2007] PIER 73 [2007] PIER 72 [2007] PIER 71 [2007] PIER 70 [2007] PIER 69 [2007] PIER 68 [2007] PIER 67 [2007] PIER 66 [2006] PIER 65 [2006] PIER 64 [2006] PIER 63 [2006] PIER 62 [2006] PIER 61 [2006] PIER 60 [2006] PIER 59 [2006] PIER 58 [2006] PIER 57 [2006] PIER 56 [2006] PIER 55 [2005] PIER 54 [2005] PIER 53 [2005] PIER 52 [2005] PIER 51 [2005] PIER 50 [2005] PIER 49 [2004] PIER 48 [2004] PIER 47 [2004] PIER 46 [2004] PIER 45 [2004] PIER 44 [2004] PIER 43 [2003] PIER 42 [2003] PIER 41 [2003] PIER 40 [2003] PIER 39 [2003] PIER 38 [2002] PIER 37 [2002] PIER 36 [2002] PIER 35 [2002] PIER 34 [2001] PIER 33 [2001] PIER 32 [2001] PIER 31 [2001] PIER 30 [2001] PIER 29 [2000] PIER 28 [2000] PIER 27 [2000] PIER 26 [2000] PIER 25 [2000] PIER 24 [1999] PIER 23 [1999] PIER 22 [1999] PIER 21 [1999] PIER 20 [1998] PIER 19 [1998] PIER 18 [1998] PIER 17 [1997] PIER 16 [1997] PIER 15 [1997] PIER 14 [1996] PIER 13 [1996] PIER 12 [1996] PIER 11 [1995] PIER 10 [1995] PIER 09 [1994] PIER 08 [1994] PIER 07 [1993] PIER 06 [1992] PIER 05 [1991] PIER 04 [1991] PIER 03 [1990] PIER 02 [1990] PIER 01 [1989]
2010-06-29
Effect of Steering Error Vector and Angular Power Distributions on Beamforming and Transmit Diversity Systems in Correlated Fading Channel
By
Progress In Electromagnetics Research, Vol. 105, 383-402, 2010
Abstract
A comparative analysis of transmit diversity and beamforming for linear and circular antenna arrays in a wireless communications system is presented. The objective is to examine the effect of random perturbations, angular power distributions on transmit diversity and beamforming system. The perturbations are modeled as additive random errors, following complex Gaussian multivariate distribution, to the antenna array steering vectors. Using outage probability, probability of error, and dynamic range of transmitter power as performance measures, we have shown significant effects of array perturbations on the two systems under spatially correlated Rayleigh fading channel. We also examine the effect of angular power distributions (uniform, truncated Gaussian, and truncated Laplacian), which corresponds to different propagation scenario, on the performance of the two systems. Results show that the central angle-of-arrival can have significant impact on system performance. And the transmit diversity system with truncated Laplacian distribution performs better as compared to other power distributions, and linear array is a preferable configuration for transmit diversity system. We conclude that array perturbations must not be neglected in the design of transmit diversity and beamforming systems.
Citation
A. Waheed Umrani, Yongliang Guan, and Fahim A. Umrani, "Effect of Steering Error Vector and Angular Power Distributions on Beamforming and Transmit Diversity Systems in Correlated Fading Channel," Progress In Electromagnetics Research, Vol. 105, 383-402, 2010.
doi:10.2528/PIER10042902
References

1. Paulraj, A., R. Nabar, and D. Gore, Introduction to Space-time Wireless Communications, Cambridge University Press, 2003.

2. Winters, J. H., "The diversity gain of transmit diversity technique in wireless systems with Rayleigh fading," IEEE Trans. on Vehicular Tech., Vol. 47, No. 1, 119-132, Feb. 1998.
doi:10.1109/25.661038

3. Friedlander, B. and S. Scherzer, "Beamforming versus transmit diversity in the downlink of cellular communication system," IEEE Trans. on Vehicular Tech., Vol. 53, No. 4, 1023-1034, Jul. 2004.
doi:10.1109/TVT.2004.830980

4. Umrani, A. W. and V. K. Dubey, "Effect of angle of arrival on transmit diversity and beamforming systems under correlated fading," IEE Electronics Letters, Vol. 41, No. 6, Mar. 2005.
doi:10.1049/el:20057830

5. Trees, H. L. V., "Optimum Array Processing, Part IV of Detection, Estimation and Modulation Theory," Wiley & Sons, Inc., 2002.

6. Lee, C.-C. and J. H. Lee, "Robust adaptive array beamforming under steering vector errors," IEEE Trans. Antennas & Propagations, Vol. 45, No. 1, 168-175, 1997.
doi:10.1109/8.554254

7. Cavers, J., Mobile Channel Characteristics, 126-135, Kluwer Academic Pub., 2002.

8. Chong, C., C. Tan, D. Laurenson, S. McLaughlin, M. Beach, and A. Nix, "A new statistical wideband spatio-temporal channel model for 5 GHz band WLAN systems ," IEEE Selected Areas in Commun., Vol. 21, No. 2, 139-150, Feb. 2003.
doi:10.1109/JSAC.2002.807347

9. Swindlehurst, A. L., M. A. Jensen, and B. D. Jeffs, "Modeling the statistical time and angle of arrival characteristics of an indoor multipath channel," IEEE Selected Areas in Commun., Vol. 18, No. 3, 347-359, Mar. 2000.
doi:10.1109/49.840194

10. Christian, K., L. George, and J. B. Andersen, "Comparison of measured and predicted dispersion and direction of arrival for multipath in a small cell environment," IEEE Trans. Antennas & Propagations, Vol. 49, No. 9, 1254-1263, Sep. 2001.
doi:10.1109/8.947016

11. Pedersen, K. I., P. E. Mogensen, and B. H. Fleury, "Power azimuth spectrum in outdoor environments," IEE Electronics Letters, Vol. 33, No. 18, 1583-1584, 1997.
doi:10.1049/el:19971029

12. Salz, J. and J. H. Winters, "Effect of fading correlation on adaptive arrays in a digital mobile radio," IEEE Trans. on Vehicular Tech., Vol. 43, No. 4, 1049-1057, Nov. 1994.
doi:10.1109/25.330168

13. Tsai, J.-A., M. Buehrer, and B. D.Woerner, "BER performance of a uniform circular array versus a uniform linear array in a mobile radio environment," IEEE Trans. on Wireless Commun., Vol. 3, No. 3, 695-700, May 2004.
doi:10.1109/TWC.2004.826332

14. Umrani, A. W. and V. K. Dubey, "Corrections to BER performance of a uniform circular array versus a uniform linear array in a mobile radio environment ," IEEE Trans. on Wireless Commun., Vol. 5, No. 4, 732, 2006.
doi:10.1109/TWC.2006.1618920

15. Tsai, J.-A., M. Buehrer, and B. D. Woerner, "The impact of AOA energy distribution on spatial fading correlation of linear antenna arrays," Proc. IEEE Vehicular Tech. Conf. VTC'02, 939-937, 2002.

16. Tsai, J.-A., M. Buehrer, and B. D. Woerner, "Spatial fading correlation function of circular antenna arrays with Laplacian energy distribution," IEEE Commun. Letters, Vol. 6, No. 5, 178-180, May 2002.
doi:10.1109/4234.1001656

17. Li, X. and Z. P. Nei, "Comments on spatial fading correlation of circular antenna arrays Laplacian energy distribution," IEEE Commun. Letters, Vol. 8, No. 5, 295, May 2004.
doi:10.1109/LCOMM.2004.827375

18. Chen, Y., Z. Zhang, and V. K. Dubey, "Effect of antenna directivity on angular power distribution at mobile terminal in urban macro-cells: A geometric channel modeling approach," Wireless Personal Communications, Vol. 43, 389-409, 2007.
doi:10.1007/s11277-006-9230-7

19. Allen, B., et al. "Performance comparison of spatial diversity array topologies in an OFDM based wireless LAN," IEEE Trans. Consumer Elect., Vol. 50, No. 2, 420-428, May 2004.
doi:10.1109/TCE.2004.1309403

20. Johnson, N. L., S. Kotz, and N. Balakrishnan, Continuous Univariate Distributions, Vol. 1, Wiley & Sons, 1994.

21. Proakis, J. G., Digital Communications, McGraw Hill, 2001.

22. Rensburg, C.-V. and B. Friedlander, "Transmit diversity for arrays in correlated Rayleigh fading," IEEE Trans. on Vehicular Tech., Vol. 53, No. 6, 1726-1734, Nov. 2004.
doi:10.1109/TVT.2004.836959

23. Anil, M. R. and L. J. Douglas, "Efficient quadratic detection in perturbed arrays via fourier transform techniques," IEEE Trans. on Signal Proces., Vol. 49, No. 7, 1269-1281, Jul. 2001.

24. Yu, J. and Y.-D. Yao, "Evaluation of reverse link performance of a CDMA system with imperfect beamforming," IEEE Vehicular Tech. Conference VTC'04, 137-141, 2004.

25. Chen, Y., Z. Zhang, and T. Qin, "Geometrically based channel model for indoor radio propagation with directional antennas," Progress In Electromagnetic Research B, Vol. 20, 109-124, 2010.
doi:10.2528/PIERB10022205

26. Chen, Y., Z. Zhang, L. Hu, and P. B. Rapajic, "Geometrical-based statistical model for radio propagation in rectangular office buildings," Progress In Electromagnetic Research B, Vol. 17, 187-212, 2009.
doi:10.2528/PIERB09080603