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Abstract—A comparative analysis of transmit diversity and beam-
forming for linear and circular antenna arrays in a wireless commu-
nications system is presented. The objective is to examine the effect
of random perturbations, angular power distributions on transmit di-
versity and beamforming system. The perturbations are modeled as
additive random errors, following complex Gaussian multivariate dis-
tribution, to the antenna array steering vectors. Using outage prob-
ability, probability of error, and dynamic range of transmitter power
as performance measures, we have shown significant effects of array
perturbations on the two systems under spatially correlated Rayleigh
fading channel. We also examine the effect of angular power distribu-
tions (uniform, truncated Gaussian, and truncated Laplacian), which
corresponds to different propagation scenario, on the performance of
the two systems. Results show that the central angle-of-arrival can
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have significant impact on system performance. And the transmit di-
versity system with truncated Laplacian distribution performs better
as compared to other power distributions, and linear array is a prefer-
able configuration for transmit diversity system. We conclude that
array perturbations must not be neglected in the design of transmit
diversity and beamforming systems.

1. INTRODUCTION

Given the demand for multimedia service provision to an increasingly
large user base, space-time processing is likely to be an integral part
of future system architectures as it provides a means of increasing
data throughput and hence system capacity. This can be implemented
by means of beamforming or spatial diversity [1]. In addition, the
proliferation of MIMO technology as related to space-time coding has
enabled the spectral efficient implementation of a transmit diversity
schemes. Transmit diversity has been developed that allows the use
of multiple antennas at the BS instead of at the mobile station (MS),
while getting essentially the same diversity advantage. It is known
that Transmit diversity system provides the benefit of diversity with
no array gain, while the transmit beamforming provides array gain but
no diversity [2, 3]. The beamforming system is normally designed so
that the fading at the antennas is highly correlated for wide range of
angular spreads, while transmit diversity is designed so that the fading
will be decorrelated for small angle spreads.

The authors in [3], presented a comparative analysis and the
tradeoffs between array gain and diversity for the two systems (i.e.,
transmit diversity and beamforming) for different number of antennas
for the forward link cellular communication system with and without
hand-off. In [4], we presented a comparative study of the two
systems by taking into account the effect of angle-of-arrival (AOA)
distributions. However, the analysis [3, 4], omitted array perturbations
that are induced due to array element gain, phase, and element position
imperfections in practical application of multiple antennas. In practice,
antennas are subject to array perturbations which is due to mismatch
between the actual array steering vectors of impinging waves and the
ideal (presumed) ones [5, 6].

Motivated by this fact, we modify the system model in [3] to take
into account the effect of array perturbations when calculating fading
correlations. We present a comparative analysis/results of transmit
diversity and beamforming system by taking into account the effects
of random errors on steering vector and three angular power density
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function (pdf) in a correlated Rayleigh fading channel. We do so by
comparing the performance of transmit diversity with a system that
uses beamforming to point a relatively narrow beam at the mobile
station. The objective is to examine the effect of random errors
on steering vector and angular pdf [7–11] (i.e., Uniform, truncated
Gaussian, and truncated Laplacian) on the performance of the two
systems with angle spread, which is defined as standard deviation of the
distribution under consideration. We consider two array configurations
in our analysis, that is, uniform linear array (ULA) and uniform
circular array (UCA). The principle parameter that determines the
diversity performance is the fading correlation, which has been studied
by several authors [12–17] among others, observed between the array
elements. The level of correlation which is a function of angular pdf,
angle spread, and array geometry determines the system performance.
It is shown how this parameter impacts the system performance in
terms of outage capacity and probability of error on the transmit
diversity and beamforming system. Consequently, this has enabled
recommendations relating to array configurations to be made suitable
for different propagation environments.

Also note that in this paper, we only consider open-loop transmit
diversity, where the base station has no knowledge of the downlink
channel. Certainly, the close-loop transmit diversity has the potential
to provide diversity as well as array gain advantage, but that is beyond
the scope of this paper.

Rest of the paper is organized as follows. In Section 2, we present
a detail description of the system model that includes a discussion
on spatial correlation matrix. The system performance in terms of
outage capacity, and probability of error, is presented in Section 3.
Section 4 details the results and provides valuable discussions. Finally,
conclusion is made in Section 5.

Notation: Lower case boldface letters are used to denote vectors
and upper case boldface letters to denote matrices, (.)T denotes the
transpose, and (.)H denotes the Hermitian transpose. In addition,
<(A) means the real part of A, =(A) means the imaginary part of A.

2. SYSTEM MODEL

A wireless communication system with M array antennas (ULA or
UCA) at the base station and a single antenna at the mobile station
is considered. Specifically, the ULA consists of four elements located
on the x direction while the UCA consists of four elements lying on a
circle about the origin as shown in the Figure 1 below.
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Figure 1. Four element ULA and UCA antenna array configuration
at the base station. R is radius of circular array and d is the spacing
between array elements, d = 2R/3.

We denote the channel response vector h = [h1, h2, . . . , hM ]T ,
where hm is the Rayleigh fading channel from mth transmit antenna
at the BS to the MS antenna. In the case where waves are uniformly
distributed over the channel angular spread, the covariance matrix of
h is given by [3, Eq. (13)],

Rh = 1/θs

∫ θs/2

−θs/2
α (θ)α (θ)H dθ (1)

where α(θ) is the column steering vector at the BS array corresponding
to the θ, where θ is the direction of the source relative to the array
(that is perpendicular to the array). Assuming the ideal conditions
and narrowband transmission, the mth entry of α(θ) is given by

αm (θ) = exp {−j2π (m− 1) (d/λ)} (2)

where λ is the wavelength of carrier frequency and d is the spacing
between array elements. Without loss of generality, we assume here
that the phase of first element is zero. Note that adding the same fixed
phase to all of the elements of the array does not change any of the
results.

Similarly, for the case of UCA, it is given by,

αm (θ) = exp (j2π (m− 1) (R/λ) sin (ξ) cos (θ − ϕm)) (3)

where αm(θ) is the mth entry α(θ), R is the circular radius of the
array, ξ is the elevation angle of arrival. For simplicity, only azimuth
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angles are considered in propagation geometry (i.e., ξ = 90◦), and ϕm

is the excitation angle of mth element that it makes with horizontal
axis as shown in Figure 1.

2.1. Spatial Correlation

The spatial propagation parameters introduced here has a direct
bearing on the spatial diversity performance of the array and
consequently determines performance improvement as compared to
a system using single antenna. In general, a receiver can receive
signals that are line-of-sight (LOS) or non-line of sight (NLOS) of
the transmitter. Assuming that the transmitter and receiver employ
omni-directional antennas in a propagation environment, signals at
the receiver will have undergone reflection and diffraction, therefore
arriving at the receiver with a range of different powers due to the loss
incurred over paths spread over the azimuth angles. These azimuth
angles forms the azimuth angular power density function (pdf). The
shape of this function is significant to this study. Given a LOS or
NLOS scenario, the spatial distribution of scatters can be modeled
as a uniform, ring or disc distribution [7] which yields the angular
pdf. According to [7], the ring and disc distributions best suit a
confined cluster of scatters observed in outdoor urban propagation
environments. Given a NLOS scenario, spatial propagation can be
modeled by a uniform distribution when signals arriving from both
azimuth and elevation angles are considered over relatively short ranges
in an indoor environment [8]. The LOS scenario can be modeled as
Laplacian or Gaussian pdf as proposed in references [9], and [10] for
indoor environments, such as rooms and offices etc. Some measurement
results also show that the angular pdf in general has a shape which
more closely resembles Gaussian or Laplacian pdf [11], while other
experiments suggest the use of truncated Gaussian pdf, when the
base station is near to the mobile station and truncated Laplacian
pdf for micro-cellular radio environments. The effect of antenna
directivity on channel characteristics (e.g., angular power distribution)
for geometrical-based statistical models have been studied by [18],
for macro-cellular and [25, 26], for micro-cellular radio environments.
For the case when angular distribution of energy around the radio
access point and the user equipment, the overall azimuthal response is
obtained by multiplying the angle-resolved impulse response with beam
pattern. For geometric channel models, the antenna effect is usually
accounted for by deleting those scatterers not within the antenna
beam-scanning range.

In this paper, we consider three angular pdfs, namely, uniform,
truncated Gaussian and truncated Laplacian. Different angular pdf
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corresponds to different propagation scenario as detailed above. In [12],
a detailed analysis on spatial fading correlation for uniform AOA on
linear arrays was carefully studied. Further research on spatial fading
correlation has been carried out for various angular pdf in [4, 13–19],
which include Gaussian and Laplacian pdf etc. We denote truncated
Gaussian pdf [13, 14] by,

f (ζs) = Cge
− (ζs−θ)2

2σ2
g −π + θ ≤ ζs ≤ π + θ (4)

where

Cg =

(
erf

(
π√
2σg

)√
2πσg

)−1

(5)

Similarly truncated Laplacian AOA pdf is written as [16],

f (ζs) = Cle
−s|θ−ζs| −π + θ ≤ ζs ≤ π + θ (6)

where
Cl =

s

2 (1− e−sπ)
(7)

In (4)–(7), θ is the mean AOA and σg is the angle spread of truncated
Gaussian distribution. Similarly, s is the decay factor which is related
to the angle spread of truncated Laplacian distribution. Specifically,
as s increases, the angle spread decreases.

2.2. Spatial Correlation Matrix

Optimal diversity performance is achieved when the signals at the array
elements are fully decorrelated. However, the degree of correlation
between two signals, denoted by ρ, is dependent upon the angular pdf
and array configuration. The ρ after normalization is in the range
of 0 ≤ |ρ| ≤ 1. Thus to achieve this assumption, it requires that
the element spacing is such that the signals arriving at each element
are decorrelated from one another for given propagation scenario. To
determine the system performance, the first step is to calculate the
spatial correlation function which will enable the values of ρ to be
determined and subsequently the resulting spatial correlation matrix
Rh, to be formed, and finally the system performance can be computed.

The closed form expressions for the real and imaginary parts of
spatial correlation matrix Rh, for uniform linear array having uniform
AOA, can easily be computed from [12]. For the case of truncated
Gaussian AOA, the real and imaginary parts of spatial correlation
matrix for ULA, and UCA are given by (8) and (9), respectively [13],
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but corrected in [14],

<{R (m,n)}=J0 (Zc)+2
√

2πCgσg

∞∑

k=1

e−2k2σ2
gJ2k (Zc) cos (2k(θ))

={R (m,n)}=2
√

2πCgσg

∞∑

k=0

e−
(2k+1)2σ2

g
2 J2k+1 (Zc) sin((2k+1)(θ))

(8)

<{R (m,n)}=J0(Zc)+2
√

2πCgσg

∞∑

k=1

e−2k2σ2
gJ2k(Zc)cos(2k(θ+α))

={R (m,n)}=2
√

2πCgσg

∞∑

k=0

e−
(2k+1)2σ2

g
2 J2k+1(Zc)sin((2k+1)(θ+α))

(9)

Similarly, for the case of truncated Laplacian AOA, the real and
imaginary parts of spatial correlation matrix is given by (10) and (11),
for ULA and UCA, respectively [16, 17],

<{R(m,n)}=J0 (Zl) + 2
∞∑

k=1

s2

s2 + 4k2
J2k (Zl) cos (2kθ)

={R(m,n)}=−2
∞∑

k=0

s (1 + e−sπ)[
s2+(2k+1)2

]
(1−e−sπ)

J2k+1(Zl) sin((2k+1)θ)
(10)

<{R(m,n)}=J0 (Zc) + 2
∞∑

k=1

s2

s2 + 4k2
J2k (Zc) cos (2k (θ + α))

={R(m,n)}=−2
∞∑

k=0

s (1 + e−sπ)(
s2+(2k+1)2

)
(1−e−sπ)

J2k+1(Zc)sin((2k+1)(θ+α))
(11)

where the parameters, Zc, Zl, and α are defined in [12, 16]. And Jn(.)
is the Bessel function of first kind and of order n. Eqs. (8) to (11) can
be used to compute the spatial correlation matrix. Therefore, for a
four-element antenna array the spatial correlation matrix can be given
by,

Rh =




ρ11 ρ12 ρ13 ρ14

ρ21 ρ22 ρ23 ρ24

ρ31 ρ31 ρ33 ρ34

ρ41 ρ42 ρ43 ρ44


 (12)

where ρmn =
√
< (Rmn)2 + = (Rmn)2 is the correlation coefficient

between element pairs m and n. For example, for a ULA M = 4,
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and d = λ, the spatial correlation matrix for three angular AOA pdf
with angle spread of 3◦ is given below,

Rh =




1 0.832 0.427 0.051
0.832 1 0.832 0.427
0.427 0.832 1 0.832
0.051 0.427 0.832 1


 ; (a)

Rh =




1 0.947 0.805 0.615
0.947 1 0.947 0.805
0.805 0.947 1 0.947
0.615 0.805 0.947 1


 ; (b)

Rh =




1 0.661 0.327 0.176
0.661 1 0.661 0.327
0.327 0.661 1 0.661
0.176 0.327 0.661 1


 (c)

Similarly for higher angle spread of 12◦ we have:

Rh =




1 0.271 0.149 0.074
0.271 1 0.271 0.149
0.149 0.271 1 0.271
0.074 0.149 0.271 1


 ; (a)

Rh =




1 0.427 0.025 0.005
0.427 1 0.427 0.025
0.025 0.427 1 0.427
0.005 0.025 0.427 1


 ; (b)

Rh =




1 0.317 0.107 0.051
0.317 1 0.317 0.107
0.107 0.317 1 0.317
0.051 0.107 0.317 1


 (c)

where (a) uniform, (b) truncated Gaussian, and (c) truncated
Laplacian.

Also note that the correlation matrix is symmetric along its
diagonal. It is obvious that the diagonal elements of the correlation
matrix is 1, however, the less obvious is that the off-diagonal elements
of the correlation matrix have different values for three angular pdf
for small and large angle spread. It is this distribution of the values
upon which the performance of spatial diversity system depends. This
process is easily repeated for the geometry associated with each array
configuration, taking into account the variations of mean AOA and
angle spread. Thus Rh, can be constructed for any given array
configuration and propagation scenarios, assuming that the angular
pdf is known.
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2.3. Antenna Array Perturbations

In practice, antennas are subjected to array perturbations which is due
to mismatch between the actual array steering vectors of impinging
waves and the ideal (presumed) ones. For small perturbations the
first order approximation applies, where the actual steering vector is
modeled with [5, P. 501–510],

α′ (θ) ≈ α (θ) + αε (13)

where αε is a steering error vector. The probability density function
(pdf) of αε follows complex Gaussian multivariate distribution with
zero-mean and covariance matrix Rε and it is given by [6],

f (αε) =
[
πM det (Rε)

]−1
exp

{−αH
ε Rεαε

}
(14)

It is assumed that αε is independent of α(θ) and spatially uncorrelated,
i.e., Rε = σ2

εIM where σ2
ε is the variance of perturbations and IM

denotes an identity matrix of size M . The model in (13) and (14) has
also been used by [23], and [24]. It is not our intention to determine
the ways to reduce the array perturbations, but rather incorporate the
above model in our analysis to see its effects on the performance of
transmit diversity and beamforming systems.

The normalized covariance matrix R′ of the channel response
vector in the presence of array perturbations becomes,

R′ =
(
1 + σ2

ε

)−1 (
Rh + σ2

εIM

)
(15)

We use Eq. (15), for providing results in the presence of array
perturbations.

3. PERFORMANCE ANALYSIS

Let S denotes the average signal-to-noise ratio (SNR) at the MS,
the instantaneous SNR observed by transmit diversity system, which
employs widely spaced antennas, is given by γ = (S/M)χ where,

χ =
∑M

m=1
|hm|2 = hHh = uHR′u (16)

And u is vector of M zero-mean unit variance independent Gaussian
random variables [2, 3]. The pdf of χ is given by [20],

fTD (χ) =
∑M

m=1

(∏M

i=1,i6=m

λm

λm − λi

)
1

λm
exp

(
− χ

λm

)
(17)

where λm are singular values (eigenvalues) of R′ and Rh, with and
without array perturbations, respectively.
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The beamforming system employs closely spaced antennas with
half-wavelength, pointing a relatively narrow beam toward MS. It
provides an effective array gain of g = wHR′w, where w is the weight
vector. The instantaneous SNR observed by the beamforming system
can be written as, γ = gSχ, where χ follows an exponential distribution
and is given by fBF (χ) = exp (−χ).

3.1. Outage Capacity

A convenient approach to compare the two systems is to calculate
their respective channel capacities. This provides a comparison that is
independent of the specific system details (such as modulation, coding,
frame/block size, etc.). The authors in [3] have used outage capacity
to provide a more realistic characterization of performance of wireless
communication systems than is provided by Shannon capacity. The
capacity is treated as a random variable, being a function of randomly
varying SNR in these works. We define the outage capacity Cout(p)
with probabilityp, which has an intuitive interpretation as the highest
transmission rate that can be sustained with probability (1− p).

The “random capacity” of wireless communication system is given
by C = log2 (1 + γ), which is a function of instantaneous SNR. For
transmit diversity systems, it can be written as C = log2 (1 + S/Mχ).
The pdf f(C) can be computed from the pdf of χ following the same
approach as in [3], using standard random variable transformation and
can be given by,

fTD (C) =
2CM log 2

S
fTD

((
2C − 1

) M

S

)
(18)

where fTD (x) is given by (17). Similarly, for beamforming system
it is, C = log2 (1 + gSχ). Using random variable transformation we
obtain,

fBF (C) =
2CM log 2

gS
fBF

((
2C − 1

) 1
gS

)
(19)

The outage capacity Cout(p) for probability p can be computed by,

p =
∫ Cout(p)

−∞
f (C)dC (20)

3.2. Power Control

It is known that the average transmitter power provides a reasonable
measure of performance for code-division multiple access (CDMA)
systems, where power is transmitted simultaneously to a large
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number of users. In that case, the instantaneous total BS power is
approximately equal to the average transmit power per user times the
total number of users. In contrast, in time division multiple access
(TDMA) systems, BS transmit only to one user at a time; in that case,
the average transmitter power may not be an adequate performance
measure. Instead, we need to look at the probability distribution
of the transmitter power. In [3], a cumulative probability density
function (cdf) for the transmitter power of transmit diversity and
beamforming systems is plotted where no correlation was assumed.
In this paper, following the same approach, we shall show the effect
of random perturbation errors, where there exists some amount of
correlation, on the transmit diversity and beamforming systems. When
the multipath fading is slow, power control attempts to adjust the
transmitter power by keeping the SNR fixed at nominal value S0 = γP .
With γ defined above, the transmitter powers of the transmit diversity
and beamforming systems are P = MS0/(χS) and P = S0/(gχS),
respectively. Without loss of generality we assume 2S0/S = 1, for
both systems [3]. Using standard variable transformation, P can easily
be expressed as a random variable dependent on χ whose pdf is already
given above. Therefore, for transmit diversity system we have,

f (P ) =
M

2P 2
fTD

(
M

2P

)
(21)

Similarly for beamforming system we have that,

f (P ) =
1

2gP 2
fBF

(
1

2gP

)
(22)

3.3. Bit Error Rate

It is evident from the analysis in section II that the level of correlation is
dependent upon angular pdf of the channel and array geometry. How
these parameters impact the probability of error is analyzed in this
section. Assuming a degree of correlation exists between the diversity
branches, the probability of error for BPSK modulation operating with
maximal-ratio combining (MRC ) is given by [21, Chapter 14], [22],

Pe =
1
2

M∑

m=1
m6=k

λM−1
m∏

m6=k (λm − λk)

(
1−

√
λmS

(1 + λm) S

)
(23)

where all the parameters are already defined above. In (23), the
eigenvalues of the correlation matrix is used here replacing the variance
of the received signal as in [21]. We have already described the
methodology to compute the spatial correlation matrix, R′ and Rh,
in Section 2.3.
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4. RESULTS AND DISCUSSION

A wireless communication system with four ULA or UCA antennas
at the BS and a single antenna at the MS is considered. The TD-U,
TD-G, and TD-L in the figures stand for transmit diversity system
with uniform pdf, transmit diversity with truncated Gaussian pdf,
and transmit diversity with truncated Laplacian, respectively. BF or
Bf stands for beamforming, and angle spread is denoted by σ in the
figures. All the results shown consider mean angle-of-arrival, θ = 0◦,
except only in Figure 9.
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Figure 2 and Figure 3, show the outage capacity curve as a
function of SNR of transmit diversity system at p = 2%. In Figure 2,
a comparison for TD-U is given for ULA and UCA for two values of
angle spread (σ = 3◦ and σ = 7◦). We can see that, base station
with ULA configuration provides higher capacity than that of UCA.
Specifically, at σ = 7◦ and C = 3bits/s/Hz, UCA is 2 dB inferior to
ULA. Similarly for TD-L and TD-G a comparison is also plotted in
Figure 3, for ULA and UCA at an angle spread of 3◦. If we compare
Figure 2 and Figure 3, it can be noticed that the TD-L provides higher
capacity than the other two pdfs.
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Figure 4. Outage probability for transmit diversity and beamforming
systems for UCA; angle spread = 3◦, Cout(p) = 3, M = 4.

0 5 10 15 20 25 30
10

-3

10
-2

10
-1

10
0

SNR (dB)

O
u
ta

g
e
 P

ro
b
a
b
ili

ty

 = 3o

Td, ideal
Td, 2

e
=1dB

Td, 2
e
=5dB

Bf, ideal
Bf, 2

e
=1dB

Bf, 2
e
=5dB

σ

σ

σ

σ

σ

Figure 5. Outage probability for transmit diversity and beamforming
system; Cout = 3 bits/s/Hz, M = 4, angular spread of 3◦.
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In Figure 4, the outage probability curve as a function of SNR of
transmit diversity and beamforming system for UCA is plotted with
Cout(p) = 3, and for angle spread of 3◦. It can be seen that the
performance of TD-U and BF (fully correlated case) is roughly the
same at p = 2%, but inferior to the case when ULA used at the base
station [3]. However, that is not the case for TD-G and TD-L, in
contrast to the conclusion made in [3], please see [4, Figure 2]. It is
clear from the Figure 4 that the transmit diversity systems do not
perform well at small angle spread, especially for TD-G.

Figure 5 shows the outage probability of the two systems for an
angular spread of 3◦, and M = 4. The curves of ideal arrays for
both transmit diversity and beamforming systems are obtained based
on ideal conditions as reported in [3, see Figure 8]. It is interesting
to note from Figure 5 that the performance of beamforming system
deteriorates while transmit diversity exhibits improved performance
over that is predicted in [3]. This is because when σ2

ε increases, R′
approaches an identity matrix, where an effective array gain for the
beamforming system reduces and the fading correlation of transmit
diversity system decreases. Hence, in the case of independent fading
R′ = IM , and g = 1, meaning that the beamforming system provides
no gain over a single antenna, whereas the transmit diversity system is
very effective, providing M degrees of freedom [2]. In contrast to the
conclusion of [3], the transmit diversity system performs better than
beamforming system in situations where array perturbation exists.
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Figure 6. Cumulative density function of transmitter power for
transmit diversity and Beamforming system for M = 4.
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In situations, where BS only transmits to one MS, for example
in TDMA systems, dynamic range of transmitter power is a better
measure than the average transmitter power [3]. In Figure 6, the
cumulative distribution function (CDF) of transmitter power for both
systems is shown. If the peak power is defined as the power level that
is exceeded 1% of the time, then we can see from Figure 6, that the
beamformer will require roughly 6.5 dB higher peak power than that of
transmit diversity [3], however, with an angle spread of 3◦ it will require
only 4.5 dB higher peak power than that of transmit diversity system.
This is due to the fact the transmit diversity system do not perform
well in correlated signal environment, while beamforming system are
robust in that case.

In Figure 7, we plot the CDF of transmitter power for both
systems in the presence of array perturbation. Again, if the peak power
is defined as the power level that is exceeded 1% of the time, then we
can see from Figure 7 that effects of array perturbations on the peak
powers of transmit diversity and beamforming systems are opposite. It
can be seen that the curve of ideal array conditions overvalues the peak
power of transmit diversity, whereas it undervalues the peak power of
beamforming system.

The results shown in Figures 2 to 7 consider the information
theoretic aspect of the system performance in terms of capacity and
outage probability with results considering central angle-of-arrival at
θ = 0◦. Figures 8 and 9 show results in terms of probability of error as
function of central angle-of-arrival θ. The objective is to examine the
impact of central angle-of-arrival, angle spread for three angular pdf,
(i.e., uniform, truncated Gaussian, and truncated Laplacian).
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Figure 7. Cumulative density function of transmitter power for
transmit diversity and beamforming system for M = 4, angular spread
of 3◦.
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Figure 8. Bit error rate of transmit diversity system for ULA; mean
AOA θ = 0◦, average SNR = 15 dB, M = 4.
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Figure 9. Bit error rate of transmit diversity system for ULA/UCA;
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Figure 8 shows bit error rate curve as a function of average SNR
for two values of angle spread (1◦ and 10◦), which corresponds to
small and large angle spreads, respectively. For small angle spread
(upper part of Figure 8), the performance is roughly the same for
three angular pdfs, except only when the SNR is higher, the TD-U
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shows better performance. Similarly, when angle spread is larger, a
significant difference in the performance of transmit diversity, which
can be observed from Figure 8 (lower part), especially with truncated
Laplacian pdf. This is due to distribution of off-diagonal values of
correlation matrix (please refer to the section of spatial correlation
matrix for more insight on it). Moreover, as discussed earlier that
truncated Laplacian pdf is best suited for LOS propagation scenarios in
indoor environments with high angle spread, and it is obvious that the
performance is always better in LOS propagation. In a similar manner,
TD-U shows a better performance as compared to TD-G for high angle
spread, though not much difference, only 1 dB SNR improvement at
1e-03. The results in Figure 8, for transmit diversity system having
uniform angular pdf are consistent with those reported in [22] for MRC
case.

Figure 9 shows the performance of the UCA and the ULA as
function of angle spread. The array geometry is given in Figure 1.
As shown, the UCA significantly outperforms the ULA at θ = 90◦.
However, at angles lower than 60◦, linear array performs similar to or
even better than the UCA. The variability in the performance of both
arrays is more pronounced at moderate angle spreads of say 5◦ (This
is typical angle spread observed in outdoor sub-urban propagation
environments), where the UCA outperforms the ULA by over an order
of magnitude at θ = 90◦. This variability in the ULA performance is
due to the fact that the correlation between elements is high for the
ULA when θ = 90◦, unless angle spread is very large. Similarly, ULA
provides an order of magnitude improvement over the UCA at θ = 45◦.
This is the worst case for the UCA, since in that case elements three and
four are directly behind the elements one and two, and thus strongly
correlated, as shown in Figure 1. We also note that all curves approach
the performance of four branch diversity as angle spread increases.

5. CONCLUSIONS

In this paper, we presented a comparative analysis of transmit
diversity system and transmit beamforming for the downlink of wireless
communication system, using outage capacity and probability of error
as performance measure for uniform linear and circular antenna arrays.
We examined the effect of angular azimuth power density functions
(i.e., Uniform, truncated Gaussian, and truncated Laplacian), on the
performance of the two systems under Rayleigh fading channel for
several values of angle spreads. These angular pdf corresponds to
different propagation environments. We also examined the effect of
array perturbations, which is modeled as additive random errors,
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following complex Gaussian multivariate distribution, to the antenna
array steering vectors. We have shown significant effects of array
perturbations on the performance of the two systems. We conclude
based on the results that array perturbations must not be neglected
in the design of transmit diversity and beamforming systems. Results
also show that the transmit diversity system using ULA or UCA at
base station with truncated Laplacian angular pdf, always perform
better even at smaller angle spreads as compared to other energy
distributions. Further it is observed that central angle-of-arrival can
have significant impact on the system performance of spatial diversity
system. It is also shown that in general ULA provides higher capacity
or better performance than that of UCA, however, the worst cases
for ULA and UCA is at the central angles of 90, and 45 degrees,
respectively.
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