Vol. 12
Latest Volume
All Volumes
PIERM 130 [2024] PIERM 129 [2024] PIERM 128 [2024] PIERM 127 [2024] PIERM 126 [2024] PIERM 125 [2024] PIERM 124 [2024] PIERM 123 [2024] PIERM 122 [2023] PIERM 121 [2023] PIERM 120 [2023] PIERM 119 [2023] PIERM 118 [2023] PIERM 117 [2023] PIERM 116 [2023] PIERM 115 [2023] PIERM 114 [2022] PIERM 113 [2022] PIERM 112 [2022] PIERM 111 [2022] PIERM 110 [2022] PIERM 109 [2022] PIERM 108 [2022] PIERM 107 [2022] PIERM 106 [2021] PIERM 105 [2021] PIERM 104 [2021] PIERM 103 [2021] PIERM 102 [2021] PIERM 101 [2021] PIERM 100 [2021] PIERM 99 [2021] PIERM 98 [2020] PIERM 97 [2020] PIERM 96 [2020] PIERM 95 [2020] PIERM 94 [2020] PIERM 93 [2020] PIERM 92 [2020] PIERM 91 [2020] PIERM 90 [2020] PIERM 89 [2020] PIERM 88 [2020] PIERM 87 [2019] PIERM 86 [2019] PIERM 85 [2019] PIERM 84 [2019] PIERM 83 [2019] PIERM 82 [2019] PIERM 81 [2019] PIERM 80 [2019] PIERM 79 [2019] PIERM 78 [2019] PIERM 77 [2019] PIERM 76 [2018] PIERM 75 [2018] PIERM 74 [2018] PIERM 73 [2018] PIERM 72 [2018] PIERM 71 [2018] PIERM 70 [2018] PIERM 69 [2018] PIERM 68 [2018] PIERM 67 [2018] PIERM 66 [2018] PIERM 65 [2018] PIERM 64 [2018] PIERM 63 [2018] PIERM 62 [2017] PIERM 61 [2017] PIERM 60 [2017] PIERM 59 [2017] PIERM 58 [2017] PIERM 57 [2017] PIERM 56 [2017] PIERM 55 [2017] PIERM 54 [2017] PIERM 53 [2017] PIERM 52 [2016] PIERM 51 [2016] PIERM 50 [2016] PIERM 49 [2016] PIERM 48 [2016] PIERM 47 [2016] PIERM 46 [2016] PIERM 45 [2016] PIERM 44 [2015] PIERM 43 [2015] PIERM 42 [2015] PIERM 41 [2015] PIERM 40 [2014] PIERM 39 [2014] PIERM 38 [2014] PIERM 37 [2014] PIERM 36 [2014] PIERM 35 [2014] PIERM 34 [2014] PIERM 33 [2013] PIERM 32 [2013] PIERM 31 [2013] PIERM 30 [2013] PIERM 29 [2013] PIERM 28 [2013] PIERM 27 [2012] PIERM 26 [2012] PIERM 25 [2012] PIERM 24 [2012] PIERM 23 [2012] PIERM 22 [2012] PIERM 21 [2011] PIERM 20 [2011] PIERM 19 [2011] PIERM 18 [2011] PIERM 17 [2011] PIERM 16 [2011] PIERM 14 [2010] PIERM 13 [2010] PIERM 12 [2010] PIERM 11 [2010] PIERM 10 [2009] PIERM 9 [2009] PIERM 8 [2009] PIERM 7 [2009] PIERM 6 [2009] PIERM 5 [2008] PIERM 4 [2008] PIERM 3 [2008] PIERM 2 [2008] PIERM 1 [2008]
2010-05-28
Parallel MoM Solution of JMCFIE for Scattering by 3-d Electrically Large Dielectric Objects
By
Progress In Electromagnetics Research M, Vol. 12, 217-228, 2010
Abstract
In this paper, we apply the parallel method of moments (MOM) to solve the Electric and Magnetic Current Combined Field Integral Equation (JMCFIE) for scattering by large, three-dimensional (3-D), arbitrarily shaped, homogeneous dielectric objects. We first derive the JMCFIE formulation which produces well-conditioned matrix equation when the MOM with Galerkin's type testing and Rao- Wilton-Glisson (RWG) functions is applied. We then develop a parallel conjugate gradient (CG) method on personal computer (PC) clusters using message passing interface (MPI) for solving the matrix equation obtained with JMCFIE. The matrix is decomposed by the row and stored in distributed memory of the node. Several numerical results are presented to demonstrate the accuracy and capability of the proposed method.
Citation
Zhiwei Cui, Yiping Han, Qiang Xu, and Minglei Li, "Parallel MoM Solution of JMCFIE for Scattering by 3-d Electrically Large Dielectric Objects," Progress In Electromagnetics Research M, Vol. 12, 217-228, 2010.
doi:10.2528/PIERM10042607
References

1. Umashankar, K. R., A. Taflove, and S. M. Rao, "Electromagnetic scattering by arbitrary shaped three-dimensional homogeneous lossy dielectric objects ," IEEE Trans. Antennas Propag., Vol. 34, 758-766, 1986.
doi:10.1109/TAP.1986.1143894

2. Sheng, X. Q., J. M. Jin, J. M. Song, and W. C. Chew, "Solution of combined-field integral equation using multilevel fast multipole algorithm for scattering by homogeneous bodies," IEEE Trans. Antennas Propag., Vol. 46, No. 11, 1718-1726, 1998.
doi:10.1109/8.736628

3. Yla-Oijala, P., "Application of a novel CFIE for electromagnetic scattering by dielectric objects," Microwave and Optical Technology Letters, Vol. 35, No. 1, 3-5, 2002.
doi:10.1002/mop.10500

4. Yla-Oijala, P. and M. Taskinen, "Application of combined field integral equation for electromagnetic scattering by dielectric and composite objects ," IEEE Trans. Antennas Propag., Vol. 53, No. 3, 1168-1173, 2005.
doi:10.1109/TAP.2004.842640

5. Yla-Oijala, P., M. Taskinen, and J. Sarvas, "Surface integral equation method for general composite metallic and dielectric structures with junctions ," Progress In Electromagnetics Research, Vol. 52, 81-108, 2005.
doi:10.2528/PIER04071301

6. Yla-Oijala, P. and M. Taskinen, "A novel combined field integral equation formulation for solving electromagnetic scattering by dielectric and composite objects," IEEE APS Symposium, Vol. 4B, 297-300, Washington, USA, 2005.

7. Ergul, O. and L. Gurel, "Preconditioned MLFMA solution of multiple dielectric-metallic composite objects with the electric and magnetic current combined-field integral equation (JMCFIE)," IEEE APS Symposium, 1-4, North Charleston USA, 2009.

8. Hestenes, M. R. and E. Stiefel, "Method of conjugate gradients for solving linear systems," J. Res. Natl. Bur. Stand., Vol. 49, 409-436, 1952.

9. Coifman, R., V. Rokhlin, and S. Wandzura, "The fast multipole method for the wave equation: A pedestrian prescription," IEEE Antennas Propagat. Mag., Vol. 35, No. 3, 7-12, 1993.
doi:10.1109/74.250128

10. Song, J. M., C. C. Lu, and W. C. Chew, "Multilevel fast multipole algorithm for electromagnetic scattering by large complex objects," IEEE Trans. Antennas Propag., Vol. 45, No. 10, 1488-1493, 1997.
doi:10.1109/8.633855

11. Peng, Z., X. Q. Sheng, and F. Yin, "An efficient twofold iterative algorithm of FE-BI-MLFMA using multilevel inverse-based ILU preconditioning," Progress In Electromagnetics Research, Vol. 93, 369-384, 2009.
doi:10.2528/PIER09060305

12. Ma, J., L. X. Guo, and A. Q. Wang, "Study of MPI based on parallel MOM on PC clusters for EM-beam scattering by 2-D PEC rough surfaces," Chinese Physics B, Vol. 18, No. 8, 3431-3437, 2009.
doi:10.1088/1674-1056/18/8/050

13. Guo, L. X., A. Q.Wang, and J. Ma, "Study on EM scattering from 2-D target above 1-D large scale rough surface with low grazing incidence by parallel MOM based on PC clusters ," Progress In Electromagnetics Research, Vol. 89, 149-166, 2009.
doi:10.2528/PIER08121002

14. Dimitra, I. K., K. S. Nikita, and A. Marsh, "Extension of method of moments for electrically large structures based on parallel computations," IEEE Trans. Antennas Propag., Vol. 45, No. 3, 566-568, 1997.
doi:10.1109/8.558675

15. Cwik, T., J. Partee, and J. Patterson, "Method of moment solutions to scattering problems in a parallel processing environment," IEEE Trans. Magnetics, Vol. 27, No. 5, 3837-3840, 1991.
doi:10.1109/20.104938

16. Que, X. F., Z. P. Nie, and J. Hu, "Analysis of EM scattering by composite conducting and dielectric object using combined field integral equation with MLFMA," Acta Electronica Sinica, Vol. 35, No. 11, 2062-2066, 2007.

17. Rao, S. M., D. R. Wilton, and A. W. Glisson, "Electromagnetic scattering by surfaces of arbitrary shape," IEEE Trans. Antennas Propag., Vol. 30, No. 3, 409-418, 1982.
doi:10.1109/TAP.1982.1142818

18. Li, L. W., Y. J. Wang, and E. P. Li, "MPI-based parallelized pre-corrected FFT algorithm for analyzing scattering by arbitrarily shaped three-dimensional objects," Progress In Electromagnetics Research, Vol. 42, 247-259, 2003.
doi:10.2528/PIER03030701

19. Saad, Y., Iterative Methods for Sparse Linear Systems, PWS Publishing Company Press, Boston, 1996.
doi:10.1137/1.9780898718003