Vol. 104
Latest Volume
All Volumes
PIER 180 [2024] PIER 179 [2024] PIER 178 [2023] PIER 177 [2023] PIER 176 [2023] PIER 175 [2022] PIER 174 [2022] PIER 173 [2022] PIER 172 [2021] PIER 171 [2021] PIER 170 [2021] PIER 169 [2020] PIER 168 [2020] PIER 167 [2020] PIER 166 [2019] PIER 165 [2019] PIER 164 [2019] PIER 163 [2018] PIER 162 [2018] PIER 161 [2018] PIER 160 [2017] PIER 159 [2017] PIER 158 [2017] PIER 157 [2016] PIER 156 [2016] PIER 155 [2016] PIER 154 [2015] PIER 153 [2015] PIER 152 [2015] PIER 151 [2015] PIER 150 [2015] PIER 149 [2014] PIER 148 [2014] PIER 147 [2014] PIER 146 [2014] PIER 145 [2014] PIER 144 [2014] PIER 143 [2013] PIER 142 [2013] PIER 141 [2013] PIER 140 [2013] PIER 139 [2013] PIER 138 [2013] PIER 137 [2013] PIER 136 [2013] PIER 135 [2013] PIER 134 [2013] PIER 133 [2013] PIER 132 [2012] PIER 131 [2012] PIER 130 [2012] PIER 129 [2012] PIER 128 [2012] PIER 127 [2012] PIER 126 [2012] PIER 125 [2012] PIER 124 [2012] PIER 123 [2012] PIER 122 [2012] PIER 121 [2011] PIER 120 [2011] PIER 119 [2011] PIER 118 [2011] PIER 117 [2011] PIER 116 [2011] PIER 115 [2011] PIER 114 [2011] PIER 113 [2011] PIER 112 [2011] PIER 111 [2011] PIER 110 [2010] PIER 109 [2010] PIER 108 [2010] PIER 107 [2010] PIER 106 [2010] PIER 105 [2010] PIER 104 [2010] PIER 103 [2010] PIER 102 [2010] PIER 101 [2010] PIER 100 [2010] PIER 99 [2009] PIER 98 [2009] PIER 97 [2009] PIER 96 [2009] PIER 95 [2009] PIER 94 [2009] PIER 93 [2009] PIER 92 [2009] PIER 91 [2009] PIER 90 [2009] PIER 89 [2009] PIER 88 [2008] PIER 87 [2008] PIER 86 [2008] PIER 85 [2008] PIER 84 [2008] PIER 83 [2008] PIER 82 [2008] PIER 81 [2008] PIER 80 [2008] PIER 79 [2008] PIER 78 [2008] PIER 77 [2007] PIER 76 [2007] PIER 75 [2007] PIER 74 [2007] PIER 73 [2007] PIER 72 [2007] PIER 71 [2007] PIER 70 [2007] PIER 69 [2007] PIER 68 [2007] PIER 67 [2007] PIER 66 [2006] PIER 65 [2006] PIER 64 [2006] PIER 63 [2006] PIER 62 [2006] PIER 61 [2006] PIER 60 [2006] PIER 59 [2006] PIER 58 [2006] PIER 57 [2006] PIER 56 [2006] PIER 55 [2005] PIER 54 [2005] PIER 53 [2005] PIER 52 [2005] PIER 51 [2005] PIER 50 [2005] PIER 49 [2004] PIER 48 [2004] PIER 47 [2004] PIER 46 [2004] PIER 45 [2004] PIER 44 [2004] PIER 43 [2003] PIER 42 [2003] PIER 41 [2003] PIER 40 [2003] PIER 39 [2003] PIER 38 [2002] PIER 37 [2002] PIER 36 [2002] PIER 35 [2002] PIER 34 [2001] PIER 33 [2001] PIER 32 [2001] PIER 31 [2001] PIER 30 [2001] PIER 29 [2000] PIER 28 [2000] PIER 27 [2000] PIER 26 [2000] PIER 25 [2000] PIER 24 [1999] PIER 23 [1999] PIER 22 [1999] PIER 21 [1999] PIER 20 [1998] PIER 19 [1998] PIER 18 [1998] PIER 17 [1997] PIER 16 [1997] PIER 15 [1997] PIER 14 [1996] PIER 13 [1996] PIER 12 [1996] PIER 11 [1995] PIER 10 [1995] PIER 09 [1994] PIER 08 [1994] PIER 07 [1993] PIER 06 [1992] PIER 05 [1991] PIER 04 [1991] PIER 03 [1990] PIER 02 [1990] PIER 01 [1989]
2010-05-09
Numerical Investigation of an Energetic Constraint for Inverse Scattering Problems
By
Progress In Electromagnetics Research, Vol. 104, 49-67, 2010
Abstract
Microwave inverse scattering approaches have shown their effectiveness in imaging inaccessible regions. Unfortunately, the problem at hand is strongly non-linear and ill-posed and therefore it is often solved by seeking for the global minimum of a proper functional. Nevertheless, it is also necessary to introduce suitable regularizations in order to improve the convergence of the reconstruction process toward a reliable solution. In this context, the paper presents a method that exploits an energetic constraint to define a regularization term of the cost functional. A numerical validation with single and multiple inhomogeneous lossless targets demonstrates that an improvement of the reconstruction accuracy is achievable without introducing significant computational complexity to the inverse scattering problem.
Citation
Davide Franceschini, "Numerical Investigation of an Energetic Constraint for Inverse Scattering Problems," Progress In Electromagnetics Research, Vol. 104, 49-67, 2010.
doi:10.2528/PIER10041309
References

1. Bolomey, J. C., Frontiers in Industrial Process Tomography, Engineering Foundation, New York, 1995.

2. Benedetti, M., M. Donelli, and A. Massa, "Multicrack detection in two-dimensional structures by means of GA-based strategies," IEEE Trans. Antennas Propagat., Vol. 55, 205-215, Jan. 2007.
doi:10.1109/TAP.2006.888399

3. Kharkovsky, S. and R. Zoughi, "Microwave and millimeter wave nondestructive testing and evaluation --- Overview and recent advances," IEEE Instrum. and Meas. Mag., Vol. 10, 26-38, Apr. 2007.
doi:10.1109/MIM.2007.364985

4. Meaney, P. M, M. W. Fanning, L. Dun, S. P. Poplack, and K. D. Paulsen, "A clinical prototype for active microwave imaging of the breast ," IEEE Trans. Microwave Theory Tech., Vol. 48, 1841-1853, Nov. 2000.

5. O'Halloran, M., R. Conceicao, D. Byrne, M. Glavin, and E. Jones, "FDTD modeling of the breast: A review," Progress In Electromagnetics Research B, Vol. 18, 1-24, 2009.
doi:10.2528/PIERB09080505

6. Lazaro, A., D. Girbau, and R. Villarino, "Simulated and experimental investigation of microwave imaging using UWB," Progress In Electromagnetic Research, Vol. 94, 263-280, 2009.
doi:10.2528/PIER09061004

7. Cui, T. J., W. C. Chew, A. A. Aydiner, and S. Chen, "Inverse scattering of two-dimensional dielectric objects buried in a lossy earth using the distorted Born iterative method," IEEE Trans. Geosci. Remote Sensing, Vol. 39, 339-346, Feb. 2001.
doi:10.1109/36.905242

8. Bermani, E., A. Boni, S. Caorsi, and A. Massa, "An innovative real-time technique for buried object detection," IEEE Trans. Geosci. Remote Sensing, Vol. 41, 927-931, 2003.
doi:10.1109/TGRS.2003.810928

9. Crocco, L., M. D'Urso, and T. Isernia, "The contrast source-extended Born model for 2D subsurface scattering problems," Progress In Electromagnetics Research B, Vol. 17, 343-359, 2009.
doi:10.2528/PIERB09080502

10. Catapano, I., L. Crocco, R. Persico, M. Pieraccini, and F. Soldovieri, "Linear and nonlinear microwave tomography approaches for subsurface prospecting: Validation on real data," IEEE Antennas Wireless Propag. Lett., Vol. 5, 49-53, Dec. 2006.
doi:10.1109/LAWP.2006.870363

11. Zhang, Z. Q. and Q. H. Liu, "Applications of the BiCGS-FFT method to 3-D induction well logging problems," IEEE Geosci. Remote Sensing, Vol. 41, 856-869, May 2003.

12. Caorsi, S., A. Massa, M. Pastorino, and M. Donelli, "Improved microwave imaging procedure for nondestructive evaluations of two-dimensional structures," IEEE Trans. Antennas Propagat., Vol. 52, 1386-1397, 2004.
doi:10.1109/TAP.2004.830254

13. Yu, Y., T. Yu, and L. Carin, "Three-dimensional inverse scattering of a dielectric target embedded in a lossy half-space," IEEE Trans. Geosci. Remote Sensing, Vol. 42, 957-973, May 2004.
doi:10.1109/TGRS.2003.820601

14. Li, F., Q. H. Liu, and L.-P. Song, "Three dimensional reconstruction of objects buried in layered media using Born and distorted Born iterative methods," IEEE Trans. Geosci. Remote Sensing, Vol. 1, 107-111, Apr. 2004.
doi:10.1109/LGRS.2004.826562

15. Franceschini, G., A. Abubakar, T. M. Habashy, and A. Massa, "A comparative assessment among iterative linear solvers dealing with electromagnetic integral equations in 3D inhomogeneous anisotropic media," Journal of Electromagnetic Waves and Applications, Vol. 21, No. 7, 899-914, 2007.
doi:10.1163/156939307780749048

16. Colton, D. and R. Krees, Inverse Acoustics and Electromagnetic Scattering Theory, Springer-Verlag, Berlin, Germany, 1992.

17. Bucci, O. M. and T. Isernia, "Electromagnetic inverse scattering: Retrievable information and measurement strategies," Radio. Sci., Vol. 32, 2123-2138, Dec. 1997.
doi:10.1029/97RS01826

18. Bucci, O. M., L. Crocco, T. Isernia, and V. Pascazio, "Subsurface inverse scattering problems: Quantifying, qualifying and achieving the available information ," IEEE Trans. Geosci. Remote Sensing, Vol. 39, 2527-2537, Nov. 2001.

19. Litman, A., "Reconstruction by level sets of N-ary scattering obstacles ," Inv. Probl., Vol. 21, S131-S152, Dec. 2005.
doi:10.1088/0266-5611/21/6/S10

20. Dorn, O. and D. Lesselier, "Level set methods for inverse scattering," Inv. Probl., Vol. 22, R67-R131, Aug. 2006.
doi:10.1088/0266-5611/22/4/R01

21. Aramini, R., M. Brignone, and M. Piana, "The linear sampling method without sampling," Inv. Probl., Vol. 22, 2237-2254, Dec. 2006.
doi:10.1088/0266-5611/22/6/020

22. Rekanos, I. T., "Shape reconstruction of a perfectly conducting scatterer using di®erential evolution and particle swarm optimization," IEEE Trans. Geosci. Remote Sensing, Vol. 46, 1967-1974, 1974.
doi:10.1109/TGRS.2008.916635

23. Kleinman , R. E. and P. M. van den Berg, "A modified gradient method for two-dimensional problems in tomography," J. Comput. Appl. Math., Vol. 42, 17-35, 1992.
doi:10.1016/0377-0427(92)90160-Y

24. Van den Berg, P. M. and A. Abubakar, "Contrast source inversion method: State of the art," Progress In Electromagnetics Research, Vol. 34, 189-218, 2001.
doi:10.2528/PIER01061103

25. Rocca, P., M. Benedetti, M. Donelli, D. Franceschini, and A. Massa, "Evolutionary optimization as applied to inverse scattering problems," Inv. Probl., Vol. 25, No. 12, Article No. 123003, Dec. 2009.

26. Garnero, L., A. Franchois, J.-P. Hugonin, C. Pichot, and N. Joachimowicz, "Microwave imaging-complex permittivity reconstruction by simulated annealing," IEEE Trans. Microwave Theory Tech., Vol. 39, 1801-1807, Nov. 1991.

27. Caorsi, S., A. Massa, and M. Pastorino, "A computational technique based on a real-coded genetic algorithm for microwave imaging purposes," IEEE Trans. Geosci. Remote Sensing, Vol. 38, 1697-1708, Jul. 2000.

28. Caorsi, S., A. Massa, M. Pastorino, and A. Randazzo, "Electromagnetic detection of dielectric scatterers using phaseless synthetic and real data and the memetic algorithm," EEE Trans. Geosci. Remote Sensing, Vol. 41, 2745-2753, 2003.
doi:10.1109/TGRS.2003.815676

29. Caorsi, S., M. Donelli, A. Lommi, and A. Massa, "Location and imaging of two-dimensional scatterers by using a particle swarm algorithm ," Journal of Electromagnetic Waves and Applications, Vol. 18, 481-494, 2004.
doi:10.1163/156939304774113089

30. Donelli, M. and A. Massa, "Computational approach based on a particle swarm optimizer for microwave imaging of two-dimensional dielectric scatterers," IEEE Trans. Microwave Theory Tech., Vol. 53, 1761-1776, May 2005.
doi:10.1109/TMTT.2005.847068

31. Donelli, M., G. Franceschini, A. Martini, A. Massa, and , "An integrated multiscaling strategy based on a particle swarm algorithm for inverse scattering problems," IEEE Trans. Geosci. Remote Sensing, Vol. 44, 298-312, 2006.
doi:10.1109/TGRS.2005.861412

32. Huang, T. and A. S. Mohan, "A microparticle swarm optimizer for the reconstruction of microwave images," IEEE Trans. Antennas Propagat., Vol. 55, 568-576, Mar. 2007.
doi:10.1109/TAP.2007.891545

33. Crocco, L. and T. Isernia, "Inverse scattering with real data: Detecting and imaging homogeneous dielectric objects," Inv. Probl., Vol. 17, 1573-1583, Dec. 2001.
doi:10.1088/0266-5611/17/6/302

34. Abubakar, A., P. M. van den Berg, and S. Y. Semenov, "Two- and three-dimensional algorithms for microwave imaging and inverse scattering," Journal of Electromagnetic Waves and Applications, Vol. 17, No. 2, 209-231, Feb. 2003.
doi:10.1163/156939303322235798

35. Jones, D. S., The Theory of Electromagnetism, Pergamon Press, Oxford, U.K., 1964.

36. Franceschetti, G., Elctromagnetics: Theory, Techniques, and Engineering Paradigms, Plenum Press, New York, London, 1997.

37. Richmond, J. H., "Scattering by a dielectric cylinder of arbitrary cross section shape," IEEE Trans. Antennas Propagat., Vol. 13, 334-341, May 1965.
doi:10.1109/TAP.1965.1138427

38. Burden, R. L. and J. D. Faires, Numerical Analysis, Brooks-Cole, Pacific Grove, CA, 2001.