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Abstract—Microwave inverse scattering approaches have shown their
effectiveness in imaging inaccessible regions. Unfortunately, the probl-
em at hand is strongly non-linear and ill-posed and therefore it is
often solved by seeking for the global minimum of a proper functional.
Nevertheless, it is also necessary to introduce suitable regularizations in
order to improve the convergence of the reconstruction process toward
a reliable solution. In this context, the paper presents a method
that exploits an energetic constraint to define a regularization term
of the cost functional. A numerical validation with single and multiple
inhomogeneous lossless targets demonstrates that an improvement
of the reconstruction accuracy is achievable without introducing
significant computational complexity to the inverse scattering problem.

1. INTRODUCTION

Reliable techniques that allow to investigate in a non-invasive fashion
inaccessible areas are of great demand in several applications. Among
the available technologies, those exploiting the electromagnetic waves
at microwaves frequencies are very appealing to fully retrieve the
dielectric and conductivity profiles of unknown scatterers. Such
properties may reveal defects in manufactures or civil structures [1–3]
(non destructive evaluation and testing of materials) or anomalies in
biological tissues and thus support, for example, the diagnosis of breast
cancers [4–6]. Moreover, further applications of inverse scattering
techniques can be found in the framework of the detection and imaging
of buried objects (e.g., [7–10]) and the geophysical inspection of oil
reservoirs [11]. In suitable conditions, the retrieval of unknown targets
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can be carried out using 2D tomographic approaches [12], however
the solution of the challenging 3D vectorial problem is necessary
in several situations in order to fully characterize the area under
investigation [13–15].

Whatever is the application at hand, the information of the
target under test is acquired by sampling the scattered field in a
proper region external to the domain to be reconstructed and inverting
such measurements. Unfortunately, the inversion techniques have to
suitable address many drawbacks intrinsically related to the inverse
scattering problem [16]. Firstly, the non-linearity of the mathematical
model and the ill-posedness have to be carefully considered [16].
Moreover, unavoidable bounds exist on the collection of independent
scattered field data even with multi-view/multi-illumination imaging
systems [17, 18]. This issue restricts the quantity of successfully
retrievable parameters and therefore it affects the obtainable spatial
resolution of the reconstructions of the scatterers under test.

To employ efficient countermeasures for these drawbacks, the
inverse scattering problem is usually recast into a minimization of
a suitable cost function that measures the discrepancy between the
available electromagnetic field data and those estimated through a
mathematical model for a trial configuration of the unknowns. When
the electromagnetic properties of the target to be imaged are a
priori known, the retrieval of the position and the shape can be
sufficient. For example, the Level Set method [19, 20] represents an
homogeneous object as the zero level of a continuous function and the
Linear Sampling technique [21] exploits a suitable indicator function to
qualitatively visualize the scatterer support. Moreover, a parametric
approach has been recently studied [22] to retrieve the contour of
perfectly conducting cylinders. On the contrary, when the complete
characterization of the region of investigation is needed, pixel based
approaches are often pursued. According to such methods, the area to
be reconstructed is partitioned exploiting a suitable discretization grid
and the values of the dielectric permittivity and electric conductivity
in each cell are usually optimized using deterministic approaches (e.g.,
gradient search based methods [23, 24]) or stochastic methods [25]. The
latters have been widely studied in the microwave imaging context both
considering single agent algorithms [26] or multiple agent strategies
inspired by the evolutionary biology [27, 28] or by the intelligence of
the swarms of insects [29–32].

In order to avoid that such algorithms carry out a blind
exploration of the solutions space, a proper cost function is usually
exploited to drive the optimization algorithms through the search
among the candidate solutions of the inverse scattering problem.
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Therefore, the cost function plays a fundamental role in connecting
an algorithmic procedure with the physic of the scattering phenomena.
Toward this aim, the most adopted approach is based on a cost function
composed by two terms. The first one exploits the relationship between
the problem unknowns (i.e., the characteristics of the object and the
internal field) and the field scattered by the structure under test in
a suitable observation region. Besides such a term, the knowledge
of the probing field allows one to define a further constraint that
takes into consideration the scattering phenomena inside the area to
be reconstructed. This introduces a regularization term that favors the
convergence of the optimization process toward the true solution.

The above-mentioned constraints obtained from the scattering
equations are not the only possible choices and other regularization
terms have been studied and successfully applied [33, 34]. In this
work, a new regularization term that exploits the principle of the
conservation of energy is proposed and analyzed. Starting from such
a principle, a constraint between the material properties and the
electric field in the investigation region is defined in order to favor
the search of the solution that satisfies the Poynting’s relationship.
The proposed approach does not require any additional a priori
knowledge regarding the properties of the scatterers under test or
the configuration of the scenario to be imaged. The outline of the
paper is as follows. Subsect. 2.1 briefly resumes the formulation
of the 2D tomographic scattering problem and in Subsect. 2.2 the
proposed regularization term is defined. The 2D scenario has been
chosen for this preliminary testing because of its simplicity and its
reduced computational complexity with respect to the 3D problem.
As far as the numerical validation is concerned, Sect. 3 reports a
selected set of representative results to analyze the effectiveness of the
introduced regularization term based on energetic constraints. Finally,
some conclusions are drawn in Sect. 4.

2. MATHEMATICAL FORMULATION

In this section, the mathematical formulation of the proposed approach
is presented. The description of the inverse scattering problem is
carried out in Subsect. 2.1, while the details about the regularization
term based on the energetic constraint are reported in Subsect. 2.2.

2.1. Problem Statement

Let us consider an unknown scatterer that can be treated as a two-
dimensional object (Fig. 1) because its cross section is invariant along
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Figure 1. Sketch of the geometry of the tomographic microwave
imaging scenario.

the z-axis. Such an object is embedded in a square investigation
area, Ω, successively illuminated by a set of known monochromatic
TM waves impinging from V different directions, Ei

v(x, y) = Ei
v(x, y)ẑ

(v = 1, . . . , V ) being the incident electric field. The characteristics
of the unknown target are described by the contrast function τ(x, y)
defined as follows

τ (x, y) = εr (x, y)− 1− j
σ (x, y)

ωεo
(1)

where ω indicates the fixed angular frequency, εo the dielectric
permittivity of the vacuum, εr(x, y) and σ(x, y) the relative
permittivity and the electrical conductivity, respectively. Our aim
is to retrieve the distribution of the contrast function (1) relying
on the m(v) = 1, . . . ,M(v); v = 1, . . . , V samples of the scattered
field Es

v(xm(v), ym(v)) = Es
v(xm(v), ym(v))ẑ collected in the observation

domain Γ surrounding the inaccessible investigation area Ω. Such
samples can be obtained from the difference between the field
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measurements performed in presence and in absence of the scatterer.
Moreover, Es

v(xm(v), ym(v)) can be related to the characteristics of
the scenario under test trough the following integral equation (“Data
Equation”) [16]

Es
v(xm(v), ym(v))= k2

0

∫

Ω
G2d

(
xm(v), ym(v)|x′, y′

)
τ
(
x′, y′

)
Et

v

(
x′, y′

)
dx′dy′,

m(v) = 1, . . . , M(v) v = 1, . . . , V (2)
where (x′, y′) ∈ Ω, (xm(v), ym(v)) ∈ Γ, k0 is the free space wavenumber
and G2d denotes the Green’s function of the background medium [35].
Et

v(x, y) is the internal field, which is also an unknown quantity to be
determined by solving the inverse problem. Moreover, as far as the
scattering phenomena inside the investigation domain are concerned,
they are modeled by means of the “State Equation”

Ei
v(x, y)=Et

v(x, y)−k2
0

∫

Ω
G2d

(
x, y|x′, y′)τ(

x′, y′
)
Et

v

(
x′, y′

)
dx′dy′ (3)

where (x, y) ∈ Ω.
Because of the ill-conditioning and the intrinsic non-linearity

of the inverse scattering problem, Eqs. (2) and (3) are usually
solved iteratively determining a sequence of trial solutions for the
contrast function and the internal field in order to minimize a
suitable cost functional based on the discrepancy between measured
[Ẽs

v(xm(v), ym(v)) ∈ Γ] or known [Ẽi
v(x, y) ∈ Ω] data and those

predicted according to the obtained trial solution. The arising cost
function is defined as follows

Φ
(
τ, Et

v

)
= αDΦD

(
τ, Et

v

)
+ αSΦS

(
τ, Et

v

)
(4)

in which the “Data Term” is defined as

ΦD

(
τ, Et

v

)
=

∑V
v=1

∥∥∥Ẽs
v

(
xm(v), ym(v)

)− Es
v

(
xm(v), ym(v)

)∥∥∥
2

Γ
∑V

v=1

∥∥∥Ẽs
v

(
xm(v), ym(v)

)∥∥∥
2

Γ

(5)

while the “State Term” is defined as

ΦS

(
τ, Et

v

)
=

∑V
v=1

∥∥∥Ẽi
v(x, y)− Ei

v(x, y)
∥∥∥

2

Ω
∑V

v=1

∥∥∥Ẽi
v(x, y)

∥∥∥
2

Ω

(6)

where ‖ · ‖2
Γ,Ω denotes the L2-norm on Γ or Ω. Moreover, αD and αS

are two weighting factors for the data and the state terms, respectively.
The goal is to find the global minimum of the functional (4),

which is assumed as the true solution of the inverse scattering problem.
Toward this aim, a variety of algorithms based on deterministic or
stochastic search approaches can be applied.
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2.2. The Energetic Constraint

As described in Subsect. 2.1, the inverse scattering problem is
solved by finding the unknowns configuration that minimizes the cost
function (4). Such a functional is usually defined considering the
“Data Term” [Eq. (5)] and the “State Term” [Eq. (6)] in order to
take into account for the scattering phenomena in the observation
domain and in the investigation domain, respectively. However, non
negligible advantages can be obtained defining further regularization
terms, which can exploit constraints available from the physics of the
problem or from the a priori information on the scenario under test.
For example, in [33] a penalty term has been introduced to consider
the knowledge about the homogeneity of the scatterer and thus force
the object function to have values equal to zero (background regions)
or to a specified contrast. Another study is reported in [34], where
a similar approach but based on a multiplicative regularization factor
has been proposed.

In this context, a regularization term based on the principle of the
conservation of energy is proposed and described in the following. Such
an approach does not need a priori information on the scenario under
test and it can be exploited to define a further relationship between the
electric field internal to the investigation area and the characteristics of
the probed medium. Toward this aim, a suitable regularization term
needs to be defined. Let us consider the complex Poynting’s vector
Sv(x, y)̂s in the frequency domain [36]

Sv(x, y)̂s =
1
2
Et

v(x, y)×Ht∗
v (x, y) (7)

where ŝ is a unit vector indicating the direction of Sv(x, y) and
Ht

v(x, y) = Ht
x,v(x, y)x̂ + Ht

y,v(x, y)ŷ the internal magnetic field,
computed from Et

v(x, y) through spatial derivatives that can be
numerically evaluated using a finite difference method [38].

If we assume an isotropic lossless medium and a source free
region, Re{Sv(x, y)} and Im{Sv(x, y)} satisfy the following differential
relationships [36]

∇ · Re {Sv(x, y)} ŝ = 0 (8)

∇ · Im {Sv(x, y)} ŝ +
ω

2
{
µ0Ht

v(x, y) ·Ht∗
v (x, y)+

−εo [Re {τ (x, y)}+ 1]Et
v(x, y) ·Et∗

v (x, y)
}

= 0 (9)

where the symbol ∗ denotes the complex conjugate.
Equation (8) represents a constraint on Re{Sv(x, y)} (i.e., on the

total field Et
v(x, y)) and Eq. (9) a bond between the unknowns of the
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internal field Et
v(x, y), v = 1, . . . , V , and the real part of the contrast

function Re{τ(x, y)} (for the specific case of lossless scatterers).
In order to investigate whether the relationships (8) and (9)

improve the effectiveness of the reconstruction process, a proper
regularization term has been defined. To numerically deal with the
optimization of the unknown parameters, the integral Eqs. (2) and (3)
are discretized considering the method of moments (MoM) [37] and
therefore τ(x, y) and Et

v(x, y) in Ω are represented through a linear
combination of piecewise constant functions (Λn, n = 1, . . . , N) as
follows

τ (x, y) '
N∑

n=1

τ (xn, yn) Λn (x, y) , (10)

Et
v(x, y) '

N∑

n=1

Et
v(xn, yn)Λn (x, y) (11)

N being the number of subdomains in which the investigation domain
Ω is partitioned. Each subdomain Vn, n = 1, . . . , N , is centered in
(xn, yn) and Λn(x, y) = 1 if (x, y) ∈ Vn, while Λn(x, y) = 0 otherwise.

Equations (8) and (9) hold in every cell Vn ∈ Ω of the
discretization grid, therefore the following term can be defined to take
into account for the conservation of energy during the solution of the
inverse scattering problem

ΦE =
1

NV

V∑

v=1

N∑

n=1

|∇ · Re [Sv (xn, yn) ŝ] + j∇ · Im [Sv (xn, yn) ŝ]

+j
ω

2
{
µ0Ht

v(x, y) ·Ht∗
v (x, y)− εo {Re [τ (xn, yn)] + 1}

Et
v(x, y) ·Et∗

v (x, y)
}∣∣2 (12)

where the divergence operator as well as Sv(xn, yn)̂s and Ht
v can be

numerically computed using a finite difference method [38].
The term (12) can be added to the “Data” and “State” terms of

Eq. (4) in order to define a new cost function as follows
Φ

(
τ, Et

v

)
= αDΦD

(
τ, Et

v

)
+ αSΦS

(
τ, Et

v

)
+ αEΦE

(
τ, Et

v

)
(13)

in which αE indicated the weighting factor for the energetic term
of the functional. In order to minimize the cost function (13),
a conjugate gradient search technique has been employed for a
preliminary investigation of the effectiveness of the term ΦE . As a
matter of fact, a deterministic strategy allows us to analyze the benefit
of the proposed approach without the need of additional unavoidable
processing connected with the stochastic nature of evolutionary
algorithms (e.g., [28, 30]).
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3. NUMERICAL VALIDATION

The effectiveness of the energetic constraint in the context of the
inverse scattering problems is assessed in this section considering a
set of selected representative experiments regarding the reconstruction
of two-dimensional lossless profiles. The test case presented in
Subsect. 3.1 is concerned with a layered contrast. Some reconstruction
results are discussed and a numerical analysis of some error figures
is reported in order to investigate the robustness of the proposed
approach. Moreover, Subsect. 3.2 presents the results regarding a
more complex multiple scatterers configuration to provide further
confirmations of the improved accuracy achievable employing the
proposed constraint.

3.1. Layered Scatterer

The reference geometry of the first test case shown in Fig. 2 is a
layered cylinder located at xref

c = yref
c = 0.0λ (λ being the free space

wavelength) in a square investigation domain LΩ = 1.0λ-sided. The
object function of the outer square layer (Lout = 0.7λ-sided) is τ1 = 1.0
while the inner layer (Lin = 0.3λ-sided) is characterized by τ2 = 2.0
and is centered at (xin, yin) = (0.1λ, 0.05λ). The investigation domain
has been illuminated by plane waves impinging from V = 8 equally-
spaced directions (θi = (v − 1)π

4 , v = 1, . . . , V ). For each incidence,
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Figure 2. Single layered profile. Reference distribution of the object
function.
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Figure 3. Single layered profile. Reconstructed contrast with (a) (c)
αE = 0 and (b) (d) αE = 1 using (a) (b) noise free data and (c) (d)
noisy data (SNR = 20 dB).

the scattered field is measured at M(v) = 35 positions and the
synthetically computed data have been blurred adding a Gaussian
noise. The reconstruction procedure has been carried out discretizing
Ω with N = 400 subdomains ad using equally weighted term in the
cost function (13): αD = αS = αE = 1.0.

The first set of results of the retrieved profiles is reported in
Fig. 3. The contrast functions of Figs. 3(a), (c) show the reconstruction
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accuracy achieved through a standard conjugate gradient-based
algorithm† that minimizes the cost functional composed only by the
“Data” and “State” terms. Fig. 3(a) refers to the noiseless case, while
Fig. 3(c) to an experiment in which a Gaussian noise of signal-to-noise
ratio (SNR) of 20 dB has been added to the scattered field measures.
As it can be observed, the results are satisfactory and the layered profile
is clearly distinguishable (the dashed lines indicate the boundaries of
the two layers). To have some quantitative parameters to compare the
retrieved targets, the following reconstruction error figures have been
defined

ζ(j) =
1

N(j)

N(j)∑

n=1

{
τ(xn, yn)− τ ref (xn, yn)

τ ref (xn, yn)

}
× 100 (14)

where N(j) can range over the whole investigation domain (j ⇒ tot),
or over the area where the actual scatterer is located (j ⇒ int), or over
the background belonging to the investigation domain (j ⇒ ext). τ ref

indicates the reference value of the actual object function of the pixel
centered in (xn, yn). According to such definitions, the values of the
overall reconstruction error (ζtot) for the profiles of Figs. 3(a), (c) are
lower than 8% (see Tab. 1).

Table 1. Single layered profile.
Values of the error figures of
the reconstructed contrast for
different SNRs (αE = 0.0).

SNR [dB] ζtot ζint ζext

Noiseless 7.46 8.25 6.73

20 7.18 9.38 5.06

10 26.31 45.09 8.28

5 33.36 54.19 13.35

Table 2. Single layered profile.
Values of the error figures of
the reconstructed contrast for
different SNRs (αE = 1.0).

SNR [dB] ζtot ζint ζext

Noiseless 8.17 8.66 7.70

20 7.91 9.23 6.64

10 12.41 16.31 8.67

5 21.70 27.60 16.04

The same experiments have been carried out also exploiting the
energetic term as described in the cost functional (13). From Figs. 3(b),
(d) and from the values of ζtot reported in Tab. 2 one can notice that
the exploitation of the energy conservation principle has not provided
any substantial improvement to the reconstruction accuracy.

Successively, further experiments have been performed with the
same test case but decreasing the SNR to 10 dB [Figs. 4(a), (b)]
and 5 dB [Figs. 4(c), (d)]. The results of such numerical simulations
† The background characteristics and the incident field configuration have been considered
as initial guess for the contrast function and the internal field, respectively.
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Figure 4. Single layered profile. Reconstructed contrast with (a) (c)
αE = 0 and (b) (d) αE = 1 — Noisy data: (a) (b) SNR = 10 dB and
(c) (d) SNR = 5 dB.

show the effectiveness of the energetic constraint, which contributes
to considerably improve the accuracy of the retrieved scatterer. If we
compare Fig. 4(a) with Fig. 4(b), the latter provides a clear estimate
of the shape of the square profile, as well as of the inhomogeneity of
the object function. This does not hold when ΦE is not exploited
[Fig. 4(a)]. Such qualitative observations are confirmed by the
reconstruction errors reported in Tab. 1 and Tab. 2. It is pointed
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out that ζtot decreases from 26.31% to 12.41% when the optimization
process is forced to search for a solution that satisfies the energetic
constraint and ζαE=0

int ' 45% versus ζαE=1
int ' 16%. Similar comments

hold for the experiments carried out with SNR = 5 dB [compare
Fig. 4(c) with Fig. 4(d) and the error figures in Tab. 1 and Tab. 2].

In the following, let us further analyze if the achieved performances
can be related to the effectiveness of the energetic constraint. Toward
this aim, Fig. 5 presents color level maps in which each pixel pictorially
shows the values of Ψv=1

E (xn, yn), n = 1, . . . , N , being

Ψv=1
E (xn, yn) = |∇ · Re [S1 (xn, yn) ŝ]+j∇ · Im [S1 (xn, yn) ŝ]

+j
ω

2
{
µ0Ht

1(x, y) ·Ht∗
1 (x, y)−εo {Re [τ (xn, yn)]+1}

Et
1(x, y) ·Et∗

1 (x, y)
}∣∣ (15)
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The plots of Ψv=1
E concerning the contrast function of Figs. 3(c), (d)

and Figs. 4(a), (b) are reported in Figs. 5(a), (b) and Figs. 5(c), (d),
respectively. Fig. 5(a) and Fig. 5(b) are clearly similar: The mean
value of ∆Ψv=1

E, 20 dB = |Ψv=1,αE=0
E, 20 dB −Ψv=1,αE=1

E, 20 dB | is 7.52× 10−4. This is
consistent with the resemblance of the retrieved profiles of Fig. 3(c) and
Fig. 3(d). Therefore, when the problem data are slightly corrupted by
noise (SNR ≥ 20 dB), the optimization process is capable to achieve a
convergence solution that satisfies the energetic constraint also without
employing the term ΦE . On the contrary, observing Fig. 5(c) it
is noticed that the values of Ψv=1

E (xn, yn) computed considering the
convergence solution achieved when αE = 0 are higher than those
of Fig. 5(d), obtained exploiting the energetic constraint. The mean
value of ∆Ψv=1

E, 10 dB is 1.37× 10−2. Consequently, the retrieved profile
of Fig. 4(a) do not satisfy very well the constraint (15) while non
negligible advantages [Fig. 4(b)] are obtained with a configuration of
the unknown parameters that better fits (15).

Before performing further numerical assessments with different
test cases, it is worth analyzing the impact of the choice of αE ,
i.e., the optimal weight of the term ΦE . Toward this aim, several
reconstructions of the reference object of Fig. 2 have been performed
setting 0.0 ≤ αE ≤ 10.0. The data have been blurred with a
Gaussian noise characterized by SNR = 10 dB for the whole set of
numerical simulations. Fig. 6 resumes the achieved results in term of
reconstruction errors. For calibration purposes, let us focus on the
behavior of ζtot. In the range 0.6 ≤ αE ≤ 2.5 the variation of ζtot is
less that 1%, therefore no appreciable differences are noted in the final
reconstructions when the value αE is set within such an interval.

3.2. Multiple Scatterers

In order to further investigate the indications drawn from the
numerical experiments of Subsect. 3.1, an additional validation has
been performed considering the multiple scatterers scenario of Fig. 7.
The first object is a cylinder centered at (x(1)

c = −0.1λ, y
(1)
c = 0.30λ)

with a rectangular cross-section of height h = 0.2λ and width w = 0.6λ.
The contrast function of such a target is homogeneous (τ (1) = 2.5). On
the contrary, the square scatterer is inhomogeneous (τ (2) = 2.0 and
τ (3) = 1.0), 0.4λ sided and centered at (x(2)

c = 0.15λ, y
(2)
c = −0.15λ).

The configuration of the measurement setup as well as the simulations
parameters are the same used in the experiments concerned with
the single scatterer of Subsect. 3.1. The gray-level representations
of the retrieved profiles are reported in Fig. 8 for SNR = 10dB
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[Figs. 8(a), (b)] and SNR = 5 dB [Figs. 8(c), (d)]. Figs. 8(a),
(c) have been obtained using the reference approach (αE = 0.0)
while in the experiments of Figs. 8(b), (d) αE = 1.0. It is clearly
noticed that the accuracy of the reconstructed object function is more
satisfactory when the term that takes into account for the conservation
of energy is employed [compare Fig. 8(a) vs. Fig. 8(b) and Fig. 8(b)
vs. Fig. 8(d)]. This can be numerically confirmed computing the
reconstruction errors, whose values are reported in Tab. 3. If the
term ΦE is exploited, the total reconstruction error decreases, being
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Table 3. Multiple scatterers profile. Values of the error figures of the
contrast retrieved with and without exploiting the energetic constraint
— Noisy data: SNR = 10 dB and SNR = 5 dB.

ζtot ζint ζext

αE = 0.0; SNR = 10 [dB] 17.28 32.18 11.49
αE = 0.0; SNR = 5 [dB] 23.87 42.92 16.46
αE = 1.0; SNR = 10 [dB] 14.51 17.26 13.44
αE = 1.0; SNR = 5 [dB] 21.69 22.70 21.30

ζα=1
tot = 84%ζα=0

tot and ζα=1
tot = 91%ζα=0

tot for the reconstructions at
SNR = 10 dB and SNR = 5dB, respectively. Moreover, let us also
consider the parameter ζint in order to estimate the reconstruction
accuracy in the regions effectively occupied by the true scatterers. The
improvement of the quality of the retrieved targets is very satisfactory,
being ζα=1

int = 54%ζα=0
int the internal error at SNR = 10 dB and

ζα=1
int = 53%ζα=0

int the same parameter at SNR = 5dB.
Finally, Fig. 9 depicts the behavior of the reconstruction error ζtot

according to different choices of the weighting parameter αE . Several
experiments have been performed setting the signal-to-noise ratio of
the Gaussian noise to 50 dB, 20 dB and 10 dB. As can be observed from
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Figure 9. Multiple scatterers profile. Behavior of the reconstruction
error ζtot for different values of αE (50 dB ≥ SNR ≥ 5 dB).

Fig. 9, the value of αE = 1.0 lies about in the center of a plateau where
the computed reconstruction error reaches the minimum values. No
significant variation of ζtot has been noticed choosing 0.5 ≤ αE ≤ 1.3.
Therefore the choice of αE = 1 can be satisfactory.

4. CONCLUSION

In the context of microwave imaging problems, this paper has presented
an energetic constraint to improve the effectiveness of inverse scattering
methodologies. The numerical experiments concerned with layered
and multiple scatterers configurations have shown that, as expected,
in ideal noiseless situations or in case of low-noise experiments the
standard approach based on the “Data” and “State” equations already
provides accurate solutions, whose configurations satisfy the energetic
constraint. On the contrary, when the data are significantly corrupted
by noise as it may occurs in practical applications, the proposed
approach provides satisfactory improvements in the quality of the
retrieved contrasts. Further studies are currently being pursued in
order to carry out an experimental validation of the proposed approach
also considering more complex lossy profiles.
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