Vol. 111
Latest Volume
All Volumes
PIER 180 [2024] PIER 179 [2024] PIER 178 [2023] PIER 177 [2023] PIER 176 [2023] PIER 175 [2022] PIER 174 [2022] PIER 173 [2022] PIER 172 [2021] PIER 171 [2021] PIER 170 [2021] PIER 169 [2020] PIER 168 [2020] PIER 167 [2020] PIER 166 [2019] PIER 165 [2019] PIER 164 [2019] PIER 163 [2018] PIER 162 [2018] PIER 161 [2018] PIER 160 [2017] PIER 159 [2017] PIER 158 [2017] PIER 157 [2016] PIER 156 [2016] PIER 155 [2016] PIER 154 [2015] PIER 153 [2015] PIER 152 [2015] PIER 151 [2015] PIER 150 [2015] PIER 149 [2014] PIER 148 [2014] PIER 147 [2014] PIER 146 [2014] PIER 145 [2014] PIER 144 [2014] PIER 143 [2013] PIER 142 [2013] PIER 141 [2013] PIER 140 [2013] PIER 139 [2013] PIER 138 [2013] PIER 137 [2013] PIER 136 [2013] PIER 135 [2013] PIER 134 [2013] PIER 133 [2013] PIER 132 [2012] PIER 131 [2012] PIER 130 [2012] PIER 129 [2012] PIER 128 [2012] PIER 127 [2012] PIER 126 [2012] PIER 125 [2012] PIER 124 [2012] PIER 123 [2012] PIER 122 [2012] PIER 121 [2011] PIER 120 [2011] PIER 119 [2011] PIER 118 [2011] PIER 117 [2011] PIER 116 [2011] PIER 115 [2011] PIER 114 [2011] PIER 113 [2011] PIER 112 [2011] PIER 111 [2011] PIER 110 [2010] PIER 109 [2010] PIER 108 [2010] PIER 107 [2010] PIER 106 [2010] PIER 105 [2010] PIER 104 [2010] PIER 103 [2010] PIER 102 [2010] PIER 101 [2010] PIER 100 [2010] PIER 99 [2009] PIER 98 [2009] PIER 97 [2009] PIER 96 [2009] PIER 95 [2009] PIER 94 [2009] PIER 93 [2009] PIER 92 [2009] PIER 91 [2009] PIER 90 [2009] PIER 89 [2009] PIER 88 [2008] PIER 87 [2008] PIER 86 [2008] PIER 85 [2008] PIER 84 [2008] PIER 83 [2008] PIER 82 [2008] PIER 81 [2008] PIER 80 [2008] PIER 79 [2008] PIER 78 [2008] PIER 77 [2007] PIER 76 [2007] PIER 75 [2007] PIER 74 [2007] PIER 73 [2007] PIER 72 [2007] PIER 71 [2007] PIER 70 [2007] PIER 69 [2007] PIER 68 [2007] PIER 67 [2007] PIER 66 [2006] PIER 65 [2006] PIER 64 [2006] PIER 63 [2006] PIER 62 [2006] PIER 61 [2006] PIER 60 [2006] PIER 59 [2006] PIER 58 [2006] PIER 57 [2006] PIER 56 [2006] PIER 55 [2005] PIER 54 [2005] PIER 53 [2005] PIER 52 [2005] PIER 51 [2005] PIER 50 [2005] PIER 49 [2004] PIER 48 [2004] PIER 47 [2004] PIER 46 [2004] PIER 45 [2004] PIER 44 [2004] PIER 43 [2003] PIER 42 [2003] PIER 41 [2003] PIER 40 [2003] PIER 39 [2003] PIER 38 [2002] PIER 37 [2002] PIER 36 [2002] PIER 35 [2002] PIER 34 [2001] PIER 33 [2001] PIER 32 [2001] PIER 31 [2001] PIER 30 [2001] PIER 29 [2000] PIER 28 [2000] PIER 27 [2000] PIER 26 [2000] PIER 25 [2000] PIER 24 [1999] PIER 23 [1999] PIER 22 [1999] PIER 21 [1999] PIER 20 [1998] PIER 19 [1998] PIER 18 [1998] PIER 17 [1997] PIER 16 [1997] PIER 15 [1997] PIER 14 [1996] PIER 13 [1996] PIER 12 [1996] PIER 11 [1995] PIER 10 [1995] PIER 09 [1994] PIER 08 [1994] PIER 07 [1993] PIER 06 [1992] PIER 05 [1991] PIER 04 [1991] PIER 03 [1990] PIER 02 [1990] PIER 01 [1989]
2010-12-09
Microwave Noise Field Behaves Like White Light
By
Progress In Electromagnetics Research, Vol. 111, 311-330, 2011
Abstract
This paper presents various applications where wide-band signals are the dominant factor. The approaches applied here are based on the present knowledge in the field of white light theory (the THz band), the particle theory of light, and the wave theory of light. White light theory is used to investigate wide-band applications of non-coherent electromagnetic waves in the GHz range represented by noise. In addition, the theoretical approaches to the field of white light are confirmed by various experiments with noise fields applied in the GHz range. These experiments show clear advantages of measurements performed by means of noise fields. The most important feature of these fields is the absence of interference effects.
Citation
Jiri Polivka, Pavel Fiala, and Jan Machac, "Microwave Noise Field Behaves Like White Light," Progress In Electromagnetics Research, Vol. 111, 311-330, 2011.
doi:10.2528/PIER10041304
References

1. Van Vlaenderen, K. J., "A charged space as the origin of sources, fields and potentials,", http://xxx.lanl.gov/, arXiv:physics/9910022 v1, October 16, 1999.

2. Kadlecova, E., "Automated system of calculation of reflecting surface of light sources,", Ph.D. thesis VUT in Brno, FEKT, Brno, September 2004.
doi:10.1007/BF02069589

3. Kraus, J. D., Radio Astronomy, McGraw-Hill, New York, 1967.

4. Polivka, J., "Microwave noise radiators," International Journal of Infrared and Millimeter Waves, Vol. 17, No. 10, 1779-1788, October 1996.

5. Polivka, J., "Spatial combination of multiple microwave noise radiators," High Frequency Electronics, 46-53, April 2008.
doi:10.2528/PIER10091302

6. Habel, J., et al., Lighting Technic and Illumination, 448 pages, FCC Public, Prague, 1995.
doi:10.2528/PIER10092807

7. Costa-Quintana, J. and F. Lopez-Aguilar, "Propagation of electromagnetic waves in material media with magnetic monopoles," Progress In Electromagnetics Research, Vol. 110, 267-295, 2010.
doi:10.2528/PIER10052602

8. Chang, H.-W. and S.-Y. Mu, "Semi-analytical solutions of 2-D homogeneous helmholtz equation by the method of connected local fields," Progress In Electromagnetics Research, Vol. 109, 399-424, 2010.

9. Lim, J., J. Lee, J. Lee, S. Han, D. Ahn, and Y. Jeong, "A new calculation method for the characteristic impedance of transmission lines with modified ground structures or perturbation," Progress In Electromagnetics Research, Vol. 106, 147-162, 2010.

10. Hofer, W. A., "A dynamic model of atoms: Structure, internal interactions and photon emissions of hydrogen,", http arXiv:quantph/9801044v2, June 8, 2000.
doi:10.2528/PIER10031011

11. Popov, E., N. Bonod, and M. Neviere, "Light transmission through a single subwavelength aperture aperture in a lossy screen," PIERS Proceedings, 1451-1455, Beijing, China, March 26-30, 2007.
doi:10.2528/PIER10032106

12. Cui, J.-P. and W.-Y. Yin, "Transfer function and compact distributed RLC models of carbon nanotube bundle interconnets and their applications," Progress In Electromagnetics Research, Vol. 104, 69-83, 2010.
doi:10.2528/PIER09102801

13. Topa, A. L., C. R. Paiva, and A. M. Barbosa, "Electromagnetic wave propagation in chiral H-guides," Progress In Electromagnetics Research, Vol. 103, 285-303, 2010.

14. Dong, J., "Exotic characteristics of power propagation in the chiral nihility fiber," Progress In Electromagnetics Research, Vol. 99, 163-178, 2009.
doi:10.2528/PIER09030506

15. Kimble, H. J., "The quantum internet," Nature, Vol. 453, 1023-1042, Insight review, June 19, 2008.
doi:10.1109/JPROC.2008.927355

16. Lee, H.-S., "A photon modeling method for the characterization of indoor optical wireless communication," Progress In Electromagnetics Research, Vol. 92, 121-136, 2009.
doi:10.1163/156939309788019723

17. Anantram, B., et al., "Modeling of nanoscale devices," Proceedings of the IEEE, Vol. 96, No. 9, 1511-1550, September 2008.

18. Yu, G. X., T. J. Cui, W. X. Jiang, X. M. Yang, Q. Cheng, and Y. Hao, "Transformation of different kinds of electromagnetic waves using metamaterials," Journal of Electromagnetic Waves and Applications, Vol. 23, 583-592, 2009.

19. Dunn, P. F., Measurement and Data Analysis for Engineering and Science, McGraw-Hill, New York, 2005.

20. Wolf, E., Theory of Coherence and Polarization of Light, Sections 3 and 5, Cambridge Univ. Press, New York, 2007.

21. Kapilevich, B. and J. Polivka, "Noise versus coherency in mm-wave material characterization," IR MM-THz Wave Conference, 15-19, CalTech, Pasadena, California, September 2008.

22. Mandel, L. and E. Wolf, "Coherence of thermal radiation," Uspekhi Fizicheskich Nauk, Part 1, t. 87, 492, 1965; Part 2, t. 88, 347, 1966; Part 3, t. 88, 619, 1966 (in Russian).
doi:10.1007/BF02066878

23. Born, M. and E.Wolf, Principles of Optics, Pergamon Press, 1980.

24. Polivka, J., "Active microwave radiometry," International Journal of Infrared and Millimeter Waves, Vol. 16, No. 3, 483-500, March 1995.
doi:10.1007/BF02274819

25. Polivka, J., "Overview of microwave sensor technology," High Frequency Electronics, 32-42, April 2007.

26. Polivka, J., "Microwave radiometry and applications," International Journal of Infrared and Millimeter Waves, Vol. 16, No. 9, 1593-1672, September 1995.

27. Zehentner, J., J. Macháč, J. Mrkvica, M. Sarnowski, and J. Polívka, "Field mapping by active radiometry," Proceedings of the 1998 Asia-Pacific Microwave Conference, Vol. 1, 217-220, Yokohama, Japan, December 1998.
doi:10.2529/PIERS060901075836

28. Polivka, J., "Noise can be good, too," Microwave Journal, Vol. 47, 66-78, March 2004.

29. Kadlecova, E. and P. Fiala, "Numerical modelling of the special light source with novel R-FEM method," PIERS Online, Vol. 2, No. 6, 644-647, 2006.

30. Polivka, J., "Experiments with microwave coherence tomography,", Part 1, High Frequency Electronics, Vol. 5, 36-40, July 2006. Part 2, High Frequency Electronics, Vol. 5, 36-43, August 2006.