Vol. 103
Latest Volume
All Volumes
PIER 180 [2024] PIER 179 [2024] PIER 178 [2023] PIER 177 [2023] PIER 176 [2023] PIER 175 [2022] PIER 174 [2022] PIER 173 [2022] PIER 172 [2021] PIER 171 [2021] PIER 170 [2021] PIER 169 [2020] PIER 168 [2020] PIER 167 [2020] PIER 166 [2019] PIER 165 [2019] PIER 164 [2019] PIER 163 [2018] PIER 162 [2018] PIER 161 [2018] PIER 160 [2017] PIER 159 [2017] PIER 158 [2017] PIER 157 [2016] PIER 156 [2016] PIER 155 [2016] PIER 154 [2015] PIER 153 [2015] PIER 152 [2015] PIER 151 [2015] PIER 150 [2015] PIER 149 [2014] PIER 148 [2014] PIER 147 [2014] PIER 146 [2014] PIER 145 [2014] PIER 144 [2014] PIER 143 [2013] PIER 142 [2013] PIER 141 [2013] PIER 140 [2013] PIER 139 [2013] PIER 138 [2013] PIER 137 [2013] PIER 136 [2013] PIER 135 [2013] PIER 134 [2013] PIER 133 [2013] PIER 132 [2012] PIER 131 [2012] PIER 130 [2012] PIER 129 [2012] PIER 128 [2012] PIER 127 [2012] PIER 126 [2012] PIER 125 [2012] PIER 124 [2012] PIER 123 [2012] PIER 122 [2012] PIER 121 [2011] PIER 120 [2011] PIER 119 [2011] PIER 118 [2011] PIER 117 [2011] PIER 116 [2011] PIER 115 [2011] PIER 114 [2011] PIER 113 [2011] PIER 112 [2011] PIER 111 [2011] PIER 110 [2010] PIER 109 [2010] PIER 108 [2010] PIER 107 [2010] PIER 106 [2010] PIER 105 [2010] PIER 104 [2010] PIER 103 [2010] PIER 102 [2010] PIER 101 [2010] PIER 100 [2010] PIER 99 [2009] PIER 98 [2009] PIER 97 [2009] PIER 96 [2009] PIER 95 [2009] PIER 94 [2009] PIER 93 [2009] PIER 92 [2009] PIER 91 [2009] PIER 90 [2009] PIER 89 [2009] PIER 88 [2008] PIER 87 [2008] PIER 86 [2008] PIER 85 [2008] PIER 84 [2008] PIER 83 [2008] PIER 82 [2008] PIER 81 [2008] PIER 80 [2008] PIER 79 [2008] PIER 78 [2008] PIER 77 [2007] PIER 76 [2007] PIER 75 [2007] PIER 74 [2007] PIER 73 [2007] PIER 72 [2007] PIER 71 [2007] PIER 70 [2007] PIER 69 [2007] PIER 68 [2007] PIER 67 [2007] PIER 66 [2006] PIER 65 [2006] PIER 64 [2006] PIER 63 [2006] PIER 62 [2006] PIER 61 [2006] PIER 60 [2006] PIER 59 [2006] PIER 58 [2006] PIER 57 [2006] PIER 56 [2006] PIER 55 [2005] PIER 54 [2005] PIER 53 [2005] PIER 52 [2005] PIER 51 [2005] PIER 50 [2005] PIER 49 [2004] PIER 48 [2004] PIER 47 [2004] PIER 46 [2004] PIER 45 [2004] PIER 44 [2004] PIER 43 [2003] PIER 42 [2003] PIER 41 [2003] PIER 40 [2003] PIER 39 [2003] PIER 38 [2002] PIER 37 [2002] PIER 36 [2002] PIER 35 [2002] PIER 34 [2001] PIER 33 [2001] PIER 32 [2001] PIER 31 [2001] PIER 30 [2001] PIER 29 [2000] PIER 28 [2000] PIER 27 [2000] PIER 26 [2000] PIER 25 [2000] PIER 24 [1999] PIER 23 [1999] PIER 22 [1999] PIER 21 [1999] PIER 20 [1998] PIER 19 [1998] PIER 18 [1998] PIER 17 [1997] PIER 16 [1997] PIER 15 [1997] PIER 14 [1996] PIER 13 [1996] PIER 12 [1996] PIER 11 [1995] PIER 10 [1995] PIER 09 [1994] PIER 08 [1994] PIER 07 [1993] PIER 06 [1992] PIER 05 [1991] PIER 04 [1991] PIER 03 [1990] PIER 02 [1990] PIER 01 [1989]
2010-04-29
A Compact Polarization Beam Splitter Based on a Multimode Photonic Crystal Waveguide with an Internal Photonic Crystal Section
By
Progress In Electromagnetics Research, Vol. 103, 393-401, 2010
Abstract
We present the design and simulation of an ultra-compact polarization beam splitter (PBS) by combining a photonic crystal (PhC) multimode waveguide and an internal PhC section. The PhC multimode waveguide is designed to collect the powers reflected by or transmitted through the internal PhC structure which serves as a polarization sensitive scatterer. Plane wave expansion (PWE) method is used to calculate the band structure and the finite-difference time-domain (FDTD) method is employed to obtain the spectrum response. The simulation results show that the present design can give an ultra-compact PBS with high extinction ratio over a broad bandwidth.
Citation
Yaocheng Shi, "A Compact Polarization Beam Splitter Based on a Multimode Photonic Crystal Waveguide with an Internal Photonic Crystal Section," Progress In Electromagnetics Research, Vol. 103, 393-401, 2010.
doi:10.2528/PIER10040402
References

1. Hu, M. H., Z. Huang, R. Scarmozzino, M. Levy, R. M. Osgood, and Jr., "Tunable Mach-Zehnder polarization splitter using height-tapered Y-branches," IEEE Photon. Technol. Lett., Vol. 9, No. 6, 773-775, 1997.
doi:10.1109/68.584986

2. Soldano, L. B., A. H. de Vreede, M. K. Smit, B. H. Verbeek, E. G. Metaal, and F. H. Groen, "Mach-Zehnder interferometer polarization splitter in InGaAsP-InP," IEEE Photon. Technol. Lett., Vol. 6, No. 3, 402-405, 1994.
doi:10.1109/68.275500

3. Kiyat, I., A. Aydinli, and N. Dagli, "A compact silicon-on-insulator polarization splitter," IEEE Photon. Technol. Lett., Vol. 17, No. 1, 100-102, 2005.
doi:10.1109/LPT.2004.838133

4. Hong, J. M., H. H. Ryu, S. R. Park, J. W. Jeong, S. G. Lee, E.-H. Lee, S.-G. Park, D. Woo, S. Kim, and B.-H. O, "Design and fabrication of a significantly shortened multimode interference coupler for polarization splitter application," IEEE Photon. Technol. Lett., Vol. 15, No. 1, 72-75, Jan. 2003.
doi:10.1109/LPT.2002.805803

5. Minin, I. V., O. V. Minin, Y. R. Triandaphilov, and V. V. Kotlyar, "Subwavelength diffractive photonic crystal lens," Progress In Electromagnetics Research B, Vol. 7, 257-264, 2008.
doi:10.2528/PIERB08041501

6. Srivastava, R., S. Pati, and S. P. Ojha, "Enhancement of omnidirectional reflection in photonic crystal heterostructures," Progress In Electromagnetics Research B, Vol. 1, 197-208, 2008.
doi:10.2528/PIERB07102903

7. Maleki Javan, A. R. and N. Granpayeh, "Fast Terahertz wave switch/modulator based on photonic crystal structures," Journal of Electromagnetic Waves and Applications, Vol. 23, No. 2-3, 203-212, 2009.
doi:10.1163/156939309787604571

8. Srivastava, R., S. Srivastava, and S. P. Ojha, "Negative refraction by photonic crystal," Progress In Electromagnetics Research B, Vol. 2, 15-26, 2008.
doi:10.2528/PIERB08042302

9. Awasthi, S. K. and S. P. Ojha, "Wide-angle broadband plate polarizer with 1D photonic crystal," Progress In Electromagnetics Research, Vol. 88, 321-335, 2008.
doi:10.2528/PIER08093003

10. Ao, X. and S. He, "Polarization beam splitters based on a two-dimensional photonic crystal of negative refraction," Opt. Lett., Vol. 30, No. 16, 2152-2154, 2005.
doi:10.1364/OL.30.002152

11. Kim, S., G. P. Nordin, J. Cai, and J. Jiang, "Ultracompact high-efficiency polarizing beam splitter with a hybrid photonic crystal and conventional waveguide structure," Opt. Lett., Vol. 28, No. 23, 2384-2386, 2003.
doi:10.1364/OL.28.002384

12. Li, Y., P. Gu, M. Li, H. Yan, and X. Liu, "Research on the wide-angle and broadband 2D photonic crystal polarization splitter," Journal of Electromagnetic Waves and Applications, Vol. 20, No. 2, 265-273, 2008.
doi:10.1163/156939306775777242

13. Kim, H.-J., I. Park, B.-H. O, S.-G.Park, E.-H. Lee, and S.-G. Lee, "Self-imaging phenomena in multi-mode photonic crystal line-defect waveguides: Application to wavelength de-multiplexing ," Opt. Express, Vol. 12, No. 23, 5625-5633, 2003.
doi:10.1364/OPEX.12.005625

14. Liu, T., A. R. Zakharian, M. Fallahi, J. V. Moloney, and M. Mansuripur, "Multi-mode interference-based photonic crystal waveguide power splitter ," J. Lightwave Technol., Vol. 22, No. 12, 2842-2846, 2004.
doi:10.1109/JLT.2004.834479

15. Li, Z., Y. Zhang, and B. Li, "Terahertz photonic crystal switch in silicon based on self-imaging principle ," Opt. Express, Vol. 14, No. 9, 3887-3892, 2006.
doi:10.1364/OE.14.003887

16. Banaei, H. A. and A. Rostami, "A novel proposal for passive all-optical demultiplexer for DWDM systems using 2-D photonic crystals," Journal of Electromagnetic Waves and Applications, Vol. 22, No. 4, 471-482, 2008.
doi:10.1163/156939308784150263

17. Qiu, M. and S. He, "Optimal design of a two-dimensional photonic crystal of square lattice with a large complete two-dimensional bandgap," J. Opt. Soc. Am. B, Vol. 17, No. 6, 1027-1030, 2000.
doi:10.1364/JOSAB.17.001027

18. Hsu, S., M. Chen, and H. Chang, "Investigation of band structures for 2D non-diagonal anisotropic photonic crystals using a finite element method based eigenvalue algorithm," Opt. Express, Vol. 15, No. 12, 5416-5430, 2007.
doi:10.1364/OE.15.005416

19. Li, Z., B. Gu, and G. Yang, "Large absolute band gap in two-dimensional anisotropic photonic crystals," Phys. Rev. Lett., Vol. 81, 2574-2577, 1998.
doi:10.1103/PhysRevLett.81.2574

20. Taflove, A., Computational Electromagnetics: The Finite-difference Time-domain Method, Artech House, Norwood, MA, 1995.