Vol. 107
Latest Volume
All Volumes
PIER 180 [2024] PIER 179 [2024] PIER 178 [2023] PIER 177 [2023] PIER 176 [2023] PIER 175 [2022] PIER 174 [2022] PIER 173 [2022] PIER 172 [2021] PIER 171 [2021] PIER 170 [2021] PIER 169 [2020] PIER 168 [2020] PIER 167 [2020] PIER 166 [2019] PIER 165 [2019] PIER 164 [2019] PIER 163 [2018] PIER 162 [2018] PIER 161 [2018] PIER 160 [2017] PIER 159 [2017] PIER 158 [2017] PIER 157 [2016] PIER 156 [2016] PIER 155 [2016] PIER 154 [2015] PIER 153 [2015] PIER 152 [2015] PIER 151 [2015] PIER 150 [2015] PIER 149 [2014] PIER 148 [2014] PIER 147 [2014] PIER 146 [2014] PIER 145 [2014] PIER 144 [2014] PIER 143 [2013] PIER 142 [2013] PIER 141 [2013] PIER 140 [2013] PIER 139 [2013] PIER 138 [2013] PIER 137 [2013] PIER 136 [2013] PIER 135 [2013] PIER 134 [2013] PIER 133 [2013] PIER 132 [2012] PIER 131 [2012] PIER 130 [2012] PIER 129 [2012] PIER 128 [2012] PIER 127 [2012] PIER 126 [2012] PIER 125 [2012] PIER 124 [2012] PIER 123 [2012] PIER 122 [2012] PIER 121 [2011] PIER 120 [2011] PIER 119 [2011] PIER 118 [2011] PIER 117 [2011] PIER 116 [2011] PIER 115 [2011] PIER 114 [2011] PIER 113 [2011] PIER 112 [2011] PIER 111 [2011] PIER 110 [2010] PIER 109 [2010] PIER 108 [2010] PIER 107 [2010] PIER 106 [2010] PIER 105 [2010] PIER 104 [2010] PIER 103 [2010] PIER 102 [2010] PIER 101 [2010] PIER 100 [2010] PIER 99 [2009] PIER 98 [2009] PIER 97 [2009] PIER 96 [2009] PIER 95 [2009] PIER 94 [2009] PIER 93 [2009] PIER 92 [2009] PIER 91 [2009] PIER 90 [2009] PIER 89 [2009] PIER 88 [2008] PIER 87 [2008] PIER 86 [2008] PIER 85 [2008] PIER 84 [2008] PIER 83 [2008] PIER 82 [2008] PIER 81 [2008] PIER 80 [2008] PIER 79 [2008] PIER 78 [2008] PIER 77 [2007] PIER 76 [2007] PIER 75 [2007] PIER 74 [2007] PIER 73 [2007] PIER 72 [2007] PIER 71 [2007] PIER 70 [2007] PIER 69 [2007] PIER 68 [2007] PIER 67 [2007] PIER 66 [2006] PIER 65 [2006] PIER 64 [2006] PIER 63 [2006] PIER 62 [2006] PIER 61 [2006] PIER 60 [2006] PIER 59 [2006] PIER 58 [2006] PIER 57 [2006] PIER 56 [2006] PIER 55 [2005] PIER 54 [2005] PIER 53 [2005] PIER 52 [2005] PIER 51 [2005] PIER 50 [2005] PIER 49 [2004] PIER 48 [2004] PIER 47 [2004] PIER 46 [2004] PIER 45 [2004] PIER 44 [2004] PIER 43 [2003] PIER 42 [2003] PIER 41 [2003] PIER 40 [2003] PIER 39 [2003] PIER 38 [2002] PIER 37 [2002] PIER 36 [2002] PIER 35 [2002] PIER 34 [2001] PIER 33 [2001] PIER 32 [2001] PIER 31 [2001] PIER 30 [2001] PIER 29 [2000] PIER 28 [2000] PIER 27 [2000] PIER 26 [2000] PIER 25 [2000] PIER 24 [1999] PIER 23 [1999] PIER 22 [1999] PIER 21 [1999] PIER 20 [1998] PIER 19 [1998] PIER 18 [1998] PIER 17 [1997] PIER 16 [1997] PIER 15 [1997] PIER 14 [1996] PIER 13 [1996] PIER 12 [1996] PIER 11 [1995] PIER 10 [1995] PIER 09 [1994] PIER 08 [1994] PIER 07 [1993] PIER 06 [1992] PIER 05 [1991] PIER 04 [1991] PIER 03 [1990] PIER 02 [1990] PIER 01 [1989]
2010-08-01
Scattering of Electromagnetic Waves from a Rectangular Plate Using an Extended Stationary Phase Method Based on Fresnel Functions (SPM-F)
By
Progress In Electromagnetics Research, Vol. 107, 63-99, 2010
Abstract
This paper presents an extension over a novel, three dimensional high frequency method for the calculation of the scattered electromagnetic (EM) field from a Perfect Electric Conductor (PEC) plate, which is based on the Physical Optics (PO) approximation and the Stationary Phase Method (SPM). This extension defines a new analytical method which is proved to be very efficient in computer execution time and enhances the accuracy of its predecessor around the area of the main scattering lobe. This new analytical method accomplishes high accuracy through the use of higher order approximation terms, which imply the use of Fresnel functions (SPM-F method). By using higher order Fresnel approximation terms, no impact on the time efficiency of the SPM method appears to occur, since the extended SPM-F method just removes the troublesome vanishing denominators when the stationary point coincides with the edges of the scatterer. The SPM-F results are compared to other straightforward numerical and exact solution methods for the same problem in the far field, Fresnel zone and the near field area of the scatterer.
Citation
Charalampos G. Moschovitis, Hristos Anastassiu, and Panayiotis V. Frangos, "Scattering of Electromagnetic Waves from a Rectangular Plate Using an Extended Stationary Phase Method Based on Fresnel Functions (SPM-F)," Progress In Electromagnetics Research, Vol. 107, 63-99, 2010.
doi:10.2528/PIER10040104
References

1. Moschovitis, C. G., K. T. Karakatselos, E. G. Papkelis, H. T. Anastassiu, I. C. Ouranos, A. Tzoulis, and P. V. Frangos, "Scattering of electromagnetic waves from a rectangular plate using an enhanced stationary phase method approximation," IEEE Trans. Antennas and Propagat., Vol. 58, No. 1, 233-238, Jan. 2010.
doi:10.1109/TAP.2009.2024015

2. Papkelis, E. G., I. Psarros, I. C. Ouranos, C. G. Moschovitis, K. T. Karakatselos, E. Vagenas, H. T. Anastassiu, and P. V. Frangos, "A radio coverage prediction model in wireless communication systems based on physical optics and the physical theory of diffraction," IEEE Antennas and Propagation Magazine, Vol. 49, No. 2, 156-165, Apr. 2007.
doi:10.1109/MAP.2007.376622

3. Papkelis, E., H. Anastassiu, and P. Frangos, "A time efficient near field scattering method applied to radio-coverage simulation in urban microcellular environments," IEEE Trans. Antennas and Propagat., Vol. 56, No. 10, 3359-3363, Oct. 2008.
doi:10.1109/TAP.2008.929516

4. Jenn, D. C., Radar and Laser Cross Section Engineering, 29-33, American Institute of Aeronautics and Astronautics, Inc., 1995.

5. Balanis, C. A., Antenna Theory: Analysis and Design, 922-926, John Wiley & Sons, 1996.

6. Graeme, L. J., Geometrical Theory of Diffraction for Electromagnetic Waves, 30-42, 61, 90 and 117-123, UK, IEE, 1976.

7. Knott, E. F., J. F. Shaeffer, and M. T. Tuley, Radar Cross-section, 2nd Edition, Artech House, 1993.

8. Sirovich, L., Techniques of Asymptotic Analysis, 136-147, New York, Springer, 1971.

9. Borovikov, V. A., Uniform Stationary Phase Method, London, UK, IEE, 1994.

10. Jones, D. S. and M. Kline, "Asymptotic expansion of multiple integrals and the method of stationary phase," J. Math. Phys., Vol. 37, 1-28, 1958.

11. Silver, S., Microwave Antenna Theory and Design, 119-122, McGraw-Hill, 1949.

12. Stiegel, K. M., et al. "Bistatic RCS of surfaces of revolution," J. Appl. Phys., Vol. 26, 297-305, 1955.
doi:10.1063/1.1721981

13. Born, M. and E. Wolf, Principles of Optics, 750-754, Pergamon Press, 1959.

14. Chako, N., "Asymptotic expansion of double and multiple integrals," J. Inst. Math. Applic., Vol. 27, 372-422, 1965.
doi:10.1093/imamat/1.4.372

15. Bleinstein, N. and R. Handelsman, "Uniform asymptotic expansions of double integrals," J. Math. Anal. Appl., Vol. 27, 434-453, 1969.
doi:10.1016/0022-247X(69)90060-2

16. Kanatas, A. G., I. D. Kountouris, G. B. Kostaras, and P. Constantinou, "A UTD propagation model in urban microcellular environments," IEEE Transactions on Vehicular Technology, Vol. 46, No. 1, 185-193, Feb. 1997.
doi:10.1109/25.554751

17. Wilton, D. R., S. M. Rao, and A. W. Glisson, "Electromagntic scattering by surfaces of arbitrary shape," IEEE Trans. Antennas Propagat., Vol. 30, No. 3, 409-418, May 1982.
doi:10.1109/TAP.1982.1142818

18. Song, J., C.-C. Lu, and W. C. Chew, "Multilevel fast multipole algorithm for electromagnetic scattering by large complex objects," IEEE Trans. Antennas Propagat., Vol. 45, No. 10, 1488-1493, Oct. 1997.
doi:10.1109/8.633855

19. Eibert, T. F., "A diagonalized multilevel fast multipole method with spherical harmonics expansion of the k-space integrals," IEEE Trans. Antennas Propagat., Vol. 53, No. 2, 814-817, Feb. 2005.
doi:10.1109/TAP.2004.841310

20. Eibert, T. and V. Hansen, "Calculation of unbounded field problems in free space by a 3D FEM/BEM-hybrid approach," Journal of Electromagnetic Waves and Applications, Vol. 10, No. 1, 61-78, Jan. 1996.
doi:10.1163/156939396X00216

21. Tzoulis, A. and T. F. Eibert, "A hybrid FEBI-MLFMM-UTD method for numerical solutions of electromagnetic problems including arbitrarily shaped and electrically large objects," IEEE Trans. Antennas Propagat., Vol. 53, No. 10, 3358-3366, Oct. 2005.
doi:10.1109/TAP.2005.856348

22. Tzoulis, A. and T. F. Eibert, "Efficient electromagnetic near-field computation by the multilevel fast multipole method employing mixed near-field/far-field translations," IEEE Antennas Wireless Propag. Lett., Vol. 4, 449-452, 2005.
doi:10.1109/LAWP.2005.860195

23. Tzoulis, A., T. Vaupel, and T. F. Eibert, "Ray optical electromagnetic far-field scattering computations using planar near-field scanning techniques," IEEE Trans. Antennas Propagat., Vol. 56, No. 2, 461-468, Feb. 2008.
doi:10.1109/TAP.2007.915436

24. Jenn, D. C., Radar and Laser Cross Section Engineering, 69-76, 2nd Edition, American Institute of Aeronautics and Astronautics, Inc., 2005.

25. Brelet, Y. and C. Bourlier, "SPM numerical results from an effective surface impedance for a one-dimensional perfectly-conducting rough sea surface," Progress In Electromagnetics Research, Vol. 81, 413-436, 2008.
doi:10.2528/PIER07121703

26. Zhang, Y., Y. E. Yang, H. Braunisch, and J. A. Kong, "Electromagnetic wave interaction of conducting object with rough surface by hybrid SPM/MoM technique," Progress In Electromagnetics Research, Vol. 22, 315-335, 1999.
doi:10.2528/PIER98112506