Vol. 12
Latest Volume
All Volumes
PIERM 130 [2024] PIERM 129 [2024] PIERM 128 [2024] PIERM 127 [2024] PIERM 126 [2024] PIERM 125 [2024] PIERM 124 [2024] PIERM 123 [2024] PIERM 122 [2023] PIERM 121 [2023] PIERM 120 [2023] PIERM 119 [2023] PIERM 118 [2023] PIERM 117 [2023] PIERM 116 [2023] PIERM 115 [2023] PIERM 114 [2022] PIERM 113 [2022] PIERM 112 [2022] PIERM 111 [2022] PIERM 110 [2022] PIERM 109 [2022] PIERM 108 [2022] PIERM 107 [2022] PIERM 106 [2021] PIERM 105 [2021] PIERM 104 [2021] PIERM 103 [2021] PIERM 102 [2021] PIERM 101 [2021] PIERM 100 [2021] PIERM 99 [2021] PIERM 98 [2020] PIERM 97 [2020] PIERM 96 [2020] PIERM 95 [2020] PIERM 94 [2020] PIERM 93 [2020] PIERM 92 [2020] PIERM 91 [2020] PIERM 90 [2020] PIERM 89 [2020] PIERM 88 [2020] PIERM 87 [2019] PIERM 86 [2019] PIERM 85 [2019] PIERM 84 [2019] PIERM 83 [2019] PIERM 82 [2019] PIERM 81 [2019] PIERM 80 [2019] PIERM 79 [2019] PIERM 78 [2019] PIERM 77 [2019] PIERM 76 [2018] PIERM 75 [2018] PIERM 74 [2018] PIERM 73 [2018] PIERM 72 [2018] PIERM 71 [2018] PIERM 70 [2018] PIERM 69 [2018] PIERM 68 [2018] PIERM 67 [2018] PIERM 66 [2018] PIERM 65 [2018] PIERM 64 [2018] PIERM 63 [2018] PIERM 62 [2017] PIERM 61 [2017] PIERM 60 [2017] PIERM 59 [2017] PIERM 58 [2017] PIERM 57 [2017] PIERM 56 [2017] PIERM 55 [2017] PIERM 54 [2017] PIERM 53 [2017] PIERM 52 [2016] PIERM 51 [2016] PIERM 50 [2016] PIERM 49 [2016] PIERM 48 [2016] PIERM 47 [2016] PIERM 46 [2016] PIERM 45 [2016] PIERM 44 [2015] PIERM 43 [2015] PIERM 42 [2015] PIERM 41 [2015] PIERM 40 [2014] PIERM 39 [2014] PIERM 38 [2014] PIERM 37 [2014] PIERM 36 [2014] PIERM 35 [2014] PIERM 34 [2014] PIERM 33 [2013] PIERM 32 [2013] PIERM 31 [2013] PIERM 30 [2013] PIERM 29 [2013] PIERM 28 [2013] PIERM 27 [2012] PIERM 26 [2012] PIERM 25 [2012] PIERM 24 [2012] PIERM 23 [2012] PIERM 22 [2012] PIERM 21 [2011] PIERM 20 [2011] PIERM 19 [2011] PIERM 18 [2011] PIERM 17 [2011] PIERM 16 [2011] PIERM 14 [2010] PIERM 13 [2010] PIERM 12 [2010] PIERM 11 [2010] PIERM 10 [2009] PIERM 9 [2009] PIERM 8 [2009] PIERM 7 [2009] PIERM 6 [2009] PIERM 5 [2008] PIERM 4 [2008] PIERM 3 [2008] PIERM 2 [2008] PIERM 1 [2008]
2010-05-03
Coupling Between an Irradiated Aperture and Monopole Antennas into a Complex Enclosure
By
Progress In Electromagnetics Research M, Vol. 12, 155-164, 2010
Abstract
The coupling between an irradiated aperture and a monopole antenna into a complex enclosure is investigated. The aperture is realized at the one side of the enclosure and the monopole antenna at the other side. The proposed study uses Babinet's principle to extend the Random Coupling Model to determine the radiation impedance of apertures. An experimental study is carried out using a computer box as an enclosure. A high intensity external electromagnetic radiation is applied to the aperture. The induced voltages is measured along the monopole antenna. The simulated probability levels of the induced voltages agree well with the experimental ones.
Citation
François Caudron, Achour Ouslimani, Rene Vezinet, Abed-elhak Kasbari, Jean-Luc Lavergne, and Jean-Sébastien Borrod, "Coupling Between an Irradiated Aperture and Monopole Antennas into a Complex Enclosure," Progress In Electromagnetics Research M, Vol. 12, 155-164, 2010.
doi:10.2528/PIERM10032405
References

1. Hemmady, S. D., A wave chaotic approach to predicting and measuring electromagnetic field quantities in complicated enclosures, Ph.D. Thesis, Univ. of Maryland College Park, Maryland, 2005.

2. Granatstein, V. L., et al. "Effects of hight power micro-waves and chaos in 21st century analog and digital electronics," AFOSR, MURI, MD 20743-3511, No. F496200110374, Institute for Research in Electronics and Applied Physics, Univ. of Maryland College Park, 2006.

3. Hemmady, S. D., X. Zheng, J. Hart, T. M. Antonsen, E. Ott, and S. M. Anlage, "Universal properties of two-port scattering, impedance, and admittance matrices of wave-chaotic systems," Phys. Rev. E, Vol. 74, 2006.
doi:10.1103/PhysRevE.74.036213

4. Zheng, X., T. M. Antonsen, and E. Ott, "Statistics of impedance and scattering matrices in chaotic microwave cavities: Single channel case," Electromagnetics, Vol. 26, No. 1, 3-35, 2006.
doi:10.1080/02726340500214894

5. Zheng, X., T. M. Antonsen, and E. Ott, "Statistics of impedance and scattering matrices of chaotic microwave cavities with multiple ports ," Electromagnetics, Vol. 26, No. 1, 37-55, 2006.
doi:10.1080/02726340500214902

6. Hemmady, S. D., X. Zheng, E. Ott, T. M. Antonsen, and S. M. Anlage, "Universal impedance fluctuations in wave chaotic systems," Phys. Rev. Lett., Vol. 94, 2005.
doi:10.1103/PhysRevLett.94.014102

7. Newman, E. H., "The equivalent separation(s) for the self-impedance of thin strips," IEEE Trans. Antennas Propag., Vol. 35, No. 1, 110-113, 1987.
doi:10.1109/TAP.1987.1143976

8. Hemmady, S. D., X. Zheng, T. M. Antonsen, E. Ott, and S. M. Anlage, "Universal statistics of the scattering coefficient of chaotic microwave cavities ," Phys. Rev. E, Vol. 71, 2005.

9. Balanis, C. A., Antenna Theory Analysis and Design, Wiley-Interscience, New York, 2005.

10. Thourel, L., "Les Antennes," Dunod, Paris, 1956.

11. Konefal, T., J. F. Dawson, A. C. Marvin, M. P. Robinson, and S. J. Porter, "A fast multiple mode intermediate level circuit model for the prediction of shielding effectiveness of a rectangular box containing a rectangular aperture," IEEE Trans. on Electromagnetic Compatibility, Vol. 47, No. 4, 2005.
doi:10.1109/TEMC.2005.853715