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Abstract—The coupling between an irradiated aperture and a
monopole antenna into a complex enclosure is investigated. The
aperture is realized at the one side of the enclosure and the monopole
antenna at the other side. The proposed study uses Babinet’s
principle to extend the Random Coupling Model to determine the
radiation impedance of apertures. An experimental study is carried
out using a computer box as an enclosure. A high intensity
external electromagnetic radiation is applied to the aperture. The
induced voltages is measured along the monopole antenna. The
simulated probability levels of the induced voltages agree well with
the experimental ones.
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1. INTRODUCTION

The significant progress in the development of civil and military mod-
ern electronic applications has led to the increase of electromagnetic
interference sources. On the other hand, due to their high electronic
characteristic performances (high architecture complexity, high sensi-
tivity, large bandwidth, high bit rate, etc, . . . ), the modern electronic
systems become more and more vulnerable to these electromagnetic
sources which affect their performance and functionality in particular
via Front-Door Coupling and Back-Door Coupling. Indeed, the per-
formances of electronic circuit blocks and devices housed within the
enclosure can be affected by these electromagnetic threats through var-
ious coupling ports commonly used in electronic systems. To predict
these electromagnetic effects, Zheng et al. [4] have proposed a stochas-
tic model based on Random Matrix Theory (RMT) of chaotic systems.
The model allows to quantify the coupling process by the non statistical
radiation impedance of the coupling ports. The scattering parameter
of one port is characterized knowing the radiation impedance of this
port (Hemmady [8]). This method has been generalized to treat mul-
tiport scattering problems (Zheng [5]) and addressed to the coupling
between monopole antennas. It has been used to numerically deter-
mine the probability levels of induced voltages along the monopole
antennas. It has been also experimentally validated for two monopole
antennas (Hemmady [1, 2]). Method using the Babinet’s principle has
been also proposed by Konefal [11] to study the prediction of shielding
effectiveness of a box containing a rectangular aperture.

In this work, we use the Babinet’s principle to extend the
Zheng’s approach [5] to predict the aperture coupling effects by
determining the radiation impedance of apertures. The first paragraph
presents the proposed method, particulary the determination of
the expression of the radiation impedance. The second paragraph
compares experimental results to those obtained from this method.

2. DETERMINATION OF THE IMPEDANCE OF THE
APERTURE

Babinet’s principle allows us to express the impedance of an aperture
in terms of a simpler complementary structure; a dipole antenna.

The impedance of the two complementary structures Zaperture and
Zdipole are related by (1) [9–11].

ZapertureZdipole =
η2

4
, (1)
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where Zaperture is the impedance of the aperture (defined in the center
of the aperture), Zdipole is the impedance of the complementary dipole
and η is the impedance of free space η = 120πΩ.

Moreover, if we have a planar dipole antenna of width a and length
b, in [7] Newman suggests that this structure is equivalent to a wire
dipole of radius r given by 4r = a. To find Zdipole, we solve the
Pocklington’s integral equation for cylindrical dipoles of length b and
radius r [9]:

∫

dipole
Iz

(
z′

) [(
d2

dz2
+ k2

)
G(z, z′)

]
dz′ = −jωεEz(ρ = r), (2)

where Ez(ρ = r) represents the tangential component of the electric
field along the dipole (the wire antenna axis coincides with the z-axis).
The Green’s function G(z, z′) is given by:

G(z, z′) =
1
2π

∫ 2π

0

e−jkR

4πR
dφ′ (3)

with

R(ρ = r) =

√
4r2 sin

φ′

2
+ (z − z′)2 (4)

In order to use (2)–(4), we need to know Ez(ρ = r). By using the
method of “magnetic-frill generator”, Ez(ρ = r) is written as [9]:

Ez (ρ = r) ' −Vi
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, (5)

where Vi is the voltage supplied by the source, b is the outer radius of
the equivalent annular aperture of the magnetic-frill generator, R0 =√

z2 + r2, A = (b2 − r2) and B = (b2 + r2). Finally, we solve from (2)
to (5) using the moment method (MoM). The radiation impedance of
a dipole is determined by the ratio of the voltage to current [9].

Zdipole =
Vi

Iin
(6)

For our application, (1) can be rewritten as:

Zaperture =
η2

4
1

Zdipole
=

η2

4
Iin

Vi
(7)

We model the cavity-monopole system as a 2-port network. We
designate the aperture as Port 1 and the monopole as Port 2 (Figure 1).
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Monopole antenna (Port 2)

(outside the enclosure)

Aperture (Port 1)

Monopole antenna

(inside the enclosure)

Figure 1. The computer box with the aperture and the monopole.

A first experimental study using the computer box as a complex
enclosure was carried out with two monopole antennas. A monopole
designated as Port 1 and the second as Port 2. The monopole antennas
are inside the cavity (Figure 1 right). This study enabled us to
validate the Random Coupling Model with this type of antenna and to
determine the loaded quality factor of the enclosure. Figure 2 depicts
the scattering parameters measured:

Figure 2. Experimental radiation S-parameters; S11 and S12.

We now transform these scattering parameters (S-parameters)
to the impedance parameters (Z-parameters) using a simple
transformation Z = Zo1/2(I + S)(I − S)−1Zo1/2, where Z is the
impedance matrix, S is the scattering matrix, I is the identity matrix
and Zo is the characteristic impedance matrix. The Zo matrix is a
real diagonal matrix. Its elements are the characteristic impedances of
the driving ports. Figure 3 presents the impedance parameters.
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Figure 3. Magnitudes of the Z-
parameters; |Z11| and |Z21|.

 

Figure 4. The conical an-
tenna and the computer box
in the anechoic chamber (CE-
SAME equipment).

We can notice that |Z11| À |Z21| ( |Z11|
|Z21| > 86) and the quantity |Z21|

is close to zero. Consequently, to simplify our study, we consider the
radiation impedance matrix Zr as a diagonal matrix. In this condition,
we can determine Zr of our system as:

Zr =
(

Zaperture 0
0 Zmonopole

)
(8)

where the radiation impedance of the monopole antenna Zmonopole

could be easily determined either numerically or experimentally. Now,
we introduce Zr in the model proposed by Zheng. The Z matrix of
our system is then given by:

Z = jIm (Zr) + (Re (Zr))
1
2 z̃ (Re (Zr))

1
2 , (9)

with, z̃ being an universal fluctuating quantity called “normalized
impedance” obtained considering that the cavity is overmoded and
the eigenfunctions satisfy the “random plane wave” hypothesis. It
describes the scalar cavity impedance of a cavity which is perfectly
coupled to its driving ports, i.e., Zr = Zo. In this case, the imaginary
part of Zr is equal to zero and the real part of Zr is equal to Zo
(Zheng [4, 5], Hemmady [6]).

z̃ =
−j
π

W
1

λ− jαI
WT (10)

The matrix W shown in (10) is a random coupling-matrix with each
element Wij representing the coupling between the ith driving port
and the jth eigenmode of the cavity. Each Wij is an independent
Gaussian distributed number with the mean equals to zero and the
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variance equals to 1. λ is a random diagonal matrix which represents
the distribution of eigenfrequency of the cavity. These eigenvalues
use the GOE (Gaussian Orthogonal Ensemble) of the Random Matrix
Theory. α = (k3V )(2π2Q)−1 is called the cavity loss-parameter
(Hemmady [1, 3]), k = 2πfc−1 is the wave-number, f and c represent
respectively the frequency of incident wave on driving ports and the
speed of light in vacuum equal to 3 (108 ms−1), V and Q represent
respectively the volume and the loaded-quality factor of the cavity.
The Equations (9) and (10) have been established on the hypothesis
that the wavelength is smaller than the characteristic dimensions of
the box.

To calculate the induced voltages along the monopole antenna, we
have determined the incident power on the aperture [11]:

P i
aperture = P1 =

E2

η
Saperture (11)

where Saperture is the surface of the aperture. From (8)–(11), we are
able to determine probability levels of the induced voltages along the
target monopole antenna.

3. THEORETICAL AND EXPERIMENTAL RESULTS

The experimental set up has been developed to verify the theoretical
part. The complex enclosure used is a computer box of dimensions
44× 43× 20 cm3. It is excited by an irradiated 14× 4 cm2 rectangular
aperture (Port n◦1). The target-circuit is modeled by a monopole
antenna of 18mm length (Port n◦2). To modify the repartition of
eigenfrequency, we have placed a mode stirrer in the computer box.
Measurements were carried out for 18 positions of stirrer and for
two polarizations ‘A’ and ‘B’, respectively perpendicular and parallel
to the aperture. The aperture is excited using a conical antenna.
Measurements have been taken in an anechoic chamber as show in
Figure 4.

The experiments were carried out with a network analyzer from
1GHz to 6 GHz. The experimental setup provides the transmission
coefficients S21. Equation (12) gives the relation between the induced
voltage V2 along the monopole antenna and various system parameters:

V2 = ln
[
cot

(
θ0

2

)]
dS21 E (12)

θ0 is the angle of the conical antenna, d is the distance between the
computer box and the cone apex. The incident electric-field E on the
aperture is generated by the conical antenna. The loaded-quality factor
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Q of the cavity is determined from the |S21|2 parameters, which has a
maximum value at the resonant frequency. The loaded cavity quality
factor Q is then the ratio of the resonant frequency to the −3 dB
bandwidth. We assume that the losses do not change significantly
in a narrow pool of frequency. We estimate the average value of
the quantity Q to 56 from 4GHz to 5 GHz. Figure 5 depicts the
probability density functions of the induced voltages at the monopole
antenna with an electric field interpolated equal to 1 kVm−1 from
4GHz to 5GHz. We find a good agreement between the experimental
probability density functions and those determined from numerical
model.

Table 1 summarizes the various numerical and experimental
statistical data. The mean values were computed versus the frequency
from 4 GHz to 5GHz and for the 18 stirrer positions.

Using the Table 1, we notice that the perpendicular polarization
is more effective in term of transmission than the parallel polarization
(〈V2〉 polar.A > 〈V2〉 polar.B). These agree well with the theory of
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Figure 5. Probability density functions of the induced voltage along
the monopole antenna for the two polarizations: (a) Polarization ‘A’
and (b) polarization ‘B’. The red stars represent the experimental data
and the blue line represents numerical data.

Table 1. Statistical data of the induced voltage V2 along the monopole
antenna. 〈V2〉 corresponds to the average of V2 and σV2 is equal to the
standard deviation of V2.

Polarization ‘A’ Polarization ‘B’
Numerical

data
Experimental

data
Numerical

data
Experimental

data
〈V2〉 (V) 2.31 2.25 1.41 1.42
σV2 (V) 1.30 1.26 0.80 0.77
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Figure 6. The cumulative distribution functions of the quantity
V2/ < V2 > (dB) for the polarizations ‘A’ and ‘B’.

Table 2. Probabilities of V2 for the two polarizations: (a) Polarization
‘A’ and (b) polarization ‘B’.

Levels of V2 (V) Probabilities (%)
1.5 ≤ V2 ≤ 2.0 17
1.0 ≤ V2 ≤ 2.5 39
0.5 ≤ V2 ≤ 3.5 46

(a)

Levels of V2 (V) Probabilities (%)
0.8 ≤ V2 ≤ 1.2 20
0.5 ≤ V2 ≤ 1.5 44
0.2 ≤ V2 ≤ 1.8 56

(b)

apertures. Nevertheless, the statistical prediction of the induced
voltage levels is more precise in the case of the parallel polarization
than in the case of the perpendicular polarization (σV2 polar.A

>
σV2 polar.B

). Figure 6 depicts the cumulative distribution functions of
the quantity V2/〈V2〉 in dB for the perpendicular polarization and for
the parallel polarization.

As examples, the Table 2 provides the induced voltage
probabilities for the two polarizations.
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4. CONCLUSION

In this work, we have proposed an approach to study the coupling
between an irradiated rectangular aperture and a monopole antenna
in a complex cavity. We have shown that the radiation impedance of
the aperture can be expressed with respect to the radiation impedance
of a complementary dipole antenna. Our approach allows to predict
quickly and accurately the statistical nature of the induced voltages
along the monopole antenna, for an aperture type excitation. A good
agreement is obtained between measurements and numerical model
results and it confirms the validity of our approach. On the other hand,
this approach is not restricted to rectangular apertures as it could be
easily expanded to other aperture geometries such as, circular.

ACKNOWLEDGMENT

This work which concerns a PhD thesis is supported by the DGA
(“Direction Générale de l’Armement”). The authors would like to
thank the CEA Gramat for all the experimentation accomplished and
in particulary for the use of the CESAME equipment.

REFERENCES

1. Hemmady, S. D., “A wave chaotic approach to predicting
and measuring electromagnetic field quantities in complicated
enclosures,” Ph.D. Thesis, Univ. of Maryland College Park,
Maryland, 2005.

2. Granatstein, V. L., et al., “Effects of hight power micro-waves
and chaos in 21st century analog and digital electronics,”
AFOSR, MURI , MD 20743-3511, No. F496200110374, Institute
for Research in Electronics and Applied Physics, Univ. of
Maryland College Park, 2006.

3. Hemmady, S. D., X. Zheng, J. Hart, T. M. Antonsen, E. Ott,
and S. M. Anlage, “Universal properties of two-port scattering,
impedance, and admittance matrices of wave-chaotic systems,”
Phys. Rev. E , Vol. 74, 2006.

4. Zheng, X., T. M. Antonsen, and E. Ott, “Statistics of impedance
and scattering matrices in chaotic microwave cavities: Single
channel case,” Electromagnetics, Vol. 26, No. 1, 3–35, 2006.

5. Zheng, X., T. M. Antonsen, and E. Ott, “Statistics of impedance
and scattering matrices of chaotic microwave cavities with
multiple ports,” Electromagnetics, Vol. 26, No. 1, 37–55, 2006.



164 Caudron et al.

6. Hemmady, S. D., X. Zheng, E. Ott, T. M. Antonsen, and
S. M. Anlage, “Universal impedance fluctuations in wave chaotic
systems,” Phys. Rev. Lett., Vol. 94, 2005.

7. Newman, E. H., “The equivalent separation(s) for the self-
impedance of thin strips,” IEEE Trans. Antennas Propag., Vol. 35,
No. 1, 110–113, 1987.

8. Hemmady, S. D., X. Zheng, T. M. Antonsen, E. Ott, and
S. M. Anlage, “Universal statistics of the scattering coefficient
of chaotic microwave cavities,” Phys. Rev. E , Vol. 71, 2005.

9. Balanis, C. A., Antenna Theory Analysis and Design, Wiley-
Interscience, New York, 2005.

10. Thourel, L., Les Antennes, Dunod, Paris, 1956.
11. Konefal, T., J. F. Dawson, A. C. Marvin, M. P. Robinson,

and S. J. Porter, “A fast multiple mode intermediate level
circuit model for the prediction of shielding effectiveness of a
rectangular box containing a rectangular aperture,” IEEE Trans.
on Electromagnetic Compatibility, Vol. 47, No. 4, 2005.


